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1 Introduction

1.1 Computational Social Sciences and Digital Traces

The presence of online social environments has had an impact on interpersonal connectivity and informa-
tion access, and while it has clearly increased both it also changed the nature in which individuals adapt
them into their daily life. At the same time, changes in individual’s behaviour aggregate and give birth to
emergent phenomena that shape a new paradigm of social organization and norms. Despite the creation of
these platforms opening a great assortment of beneficial social advances, growing polarization, conflict, and
hostility online have been increasingly prevalent in the past decade [1] [2] [3]. A substantial amount of work
has been and is dedicated to understanding how new online connectivity configurations are affecting human
interaction.

The enormous bulk of digital trace data comprised by these interactions takes on a great variety of forms:
from the agreeability of a ”like” click in Facebook to a long stance defining paragraph in Reddit, and even
GPS location history. This data is already used in add recommendations, optimization of commuting routes
and many other data analysis pipelines managed by companies and institutions, who understand the value
of this data not only for its spontaneity but also because the there’s power in numbers: aggregation of
individual data can reveal behavioural regularities of the society seen as a whole system. Understanding
these patterns is not only relevant for the goal of predicting, which goes first in line for what concerns business
interests, but can also provide incredibly insightful knowledge to social sciences concerns. For example, in
[4], they study how network structures grown from Homophily—our tendency to connect with those similar
to us— and Preferential attachment (PA)—our tendency to connect with already popular individuals— can
harm minorities’ connectivity with the majority and consequently their overall visibility in the network. The
models and theories developed around the use of this data for such purposes are framed around the field of
Computational Social Sciences. Even if the availability of data and computational power for these techniques
and methodologies has been around in the last decades, the field feeds on substantially interdisciplinary and
established sources (e.g. social psychology and statistical physics).

1.2 Networks and Signed Networks

Expanding the example of statistical physics, to model the behaviour of groups of particles and find emer-
gence of collective phenomena, it is necessary to add the interaction between particles, often in the shape
of pair-wise interactions. When modelling online communities, interactions (such as following each other,
re-tweets or likes) can be thought of as one of these pair-wise interactions between two users. These constel-
lations of interactions fall naturally in the competence of Network Science frameworks, being this field an
optimal tool for the study of large social systems. From the description of local interactions, we achieve to
explain macroscopic properties of the system (e.g. social networks resilience [5] ) and unveil relevant patterns
in the data (e.g. community detection [6] ) . To all of these, additional layers of temporal information [7]
or multi modal interactions [8] can be considered, given the amount of methodological and theoretical work
done on these new types of network structures recently.

Signed Networks
A sub-set in the field of Network Science is the use of Signed Networks, in which each node represents an
individual in a community and interactions are bimodal and generate positive (+) or negative (-) edges.
In social media, such interaction attributes can be based on liking, praise, friendships or trust for positive
edges and disliking, toxicity, enmity or distrust for negative edges. Even though these parameters follow
continuous distributions, and one can have a neutral stance towards a neighbour user, there are proper
methodologies to extract statistically significant edge information, and the consideration of the system par-
ticularities is of most relevance when designing the extraction of such information. For example, in small
systems where users recognize each other, the explicit decision of ignoring their neighbour can be sufficiently
significant to generate a negative edge, while in larger systems it can easily mean the two users simply did
not happen to find each other in the platform. There exists an established and known amount of datasets
obtained from mining signed graphs out of online social systems [9][10][11][12][13][14][15].
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Structural Balance
Signed Network analysis is strongly linked to social psychology theories that were tested in small scale,
real life social systems. Balance theory supports a human tendency to fall into specific balanced local con-
figurations regarding the sign of the ties (i.e. the enemy of my friend is my enemy [16]) and it has been
studied largely from different approaches [17][18][19][20][21]. Structural balance is a macro-scale property de-
rived from a balance theory generalization to large scale networks. In the past decade there have been efforts
in defining partial balance, which denotes how far is the network from being completely balanced [19] [22][21].

Other properties
Besides this formalization of previous social psychology theories, the proposal of using antagonistic inter-
actions as well serves as an extension to a large amount of work done on only positive interactions. For
example, previous research failed to fill the gap in analysing signed and dynamic interactions in online com-
munities simultaneously [23], mostly due to data unavailability. This also indicates there is a plethora of
methodologies that, even if completely established and commonly used on positive networks, needs to be
assessed and adapted to other structures such as signed networks. Moreover, the use of these methodologies
on systems that contain new information can lead to relevant, non-trivial outcomes. For example, while the
function and importance of weak links in certain social systems [24] is known for positive networks, it is
not so clear which roles nodes take in bridging communities detected in signed networks. Other elements
to pay attention to could be: the proper definition of null models, the overview of community detection
methodologies or the extraction of latent space models.

1.3 Study of Polarization with Networks

One of the online (and offline) phenomena that is in the focus of attention of academics from several disciplines
currently is polarization. Polarization is a property of social systems in which different groups of people hold
opposing views on a specific matter with an antagonistic nature. While the population can be polarized
in one given topic, the correlation of those extreme opinions (i.e. issue alignment) in an aggregated bulk
of topics is central to obtain a global polarized structure [25], in which, for example, the stance of a user
regarding abortion will be highly correlated with their stance on gun control. On the other side, while the
aforementioned phenomena would be labelled as ideological polarization, the addition of in-group positive
feelings and out-group hate or dislike is defined as affective polarization.

Polarization is visible in real life recent contexts (either in the shape of demonstrations and social unrest
and conflict or election results), but some growing effects can be easily traced back to the online realm, es-
pecially when putting it side to side with click-bait news, social media feed design and anonymous extremist
forums. These increasing cases have important social consequences, given that it directly influences public
debates, violence and formation of governments.

Polarization study with networks
The study of such systems is strongly based on detecting and analysing opinion or attitude distributions
with respect to a given topic. This can be done traditionally (with surveys or polls), but is increasingly
done with automated tools and social media data, such as using Sentiment analysis (Supervised Machine
Learning Classification models) on Tweets [26][27]. These types of methods require proper data labelling
and are dependent on language.

Other approaches, instead, are based on network structures only (such as following or retweet networks),
in which the goal is to locate the position of users in a Latent Ideology Space to retrieve the ideology distri-
bution [28] [3] [29] [10].

Polarization study with signed networks
The description of polarization, and more specifically affective polarization, organically calls for the addition
of antagonistic interaction. Together with all the other approaches, the use of signed networks can provide
a new radiography of polarization for certain communities. Even though some high-quality work has been
done in the intersection of signed networks and polarization [19] [30] [31] [10] [32], there is no settled pipeline
or methodology to obtain clear polarization measures or indicators from signed networks.
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Elite minorities and polarization
Finally, another point of interest in this thesis is the presence of elite minorities in the communities and
their relevance in global phenomena (such as polarization). As hinted in [32], sub-communities of a system
can be the drivers of large-scale polarized structures and can be responsible for the dissemination of extreme
ideologies. This could be an apparent effect even if there exists a moderate majority in online environments,
that is somehow underrepresented in the opinion distributions obtained as the outcomes of these methods.
In any normally distributed opinion there exists two tails of small strongly conflicting minorities. If these
minorities gain control of the discourse, we could be talking of a ”spiral of noise” or ”elite capture” more
than a ”global polarization”. In which the latter does not mean it is not an existing problem but that it
might be a problem rooted in or exacerbated by such mechanisms.

1.4 Summary: the intersection. Motivation and challenges.

In summary, there exists a gap in the assortment of points of views from which we can describe how opinions
spread and evolve online. Our social circles and dynamics are clearly defined by those who we see opposite
to us as well as our friends, and differentiation processes are a key aspect in conflict resolution, but can also
be a source of extremism or violence when done in unfortunate environments. Therefore, the addition of
antagonistic interactions to the study of social systems is of most relevance, and needs to be done under
robust and carefully designed methodologies.

2 Research objectives

2.1 Thesis goals

The main goal of this Thesis will be to understand and describe the differences perceived in our knowledge,
methodology and conclusions related to online social systems analysis when considering antagonistic struc-
tures as well as the prevailing positive network analysis, with a special focus in its effect for phenomena
related to opinion dynamics, group identity and polarization. The consideration of antagonistic structures
is flexible and can be obtained from different approaches. For example, the addition of negative edges in
positive networks or the design of competing minorities in network creation models tuned with homophily
parameters.

To achieve this global goal, we set the following specific objectives with the corresponding project infor-
mation:

1. Develop models based on group and opinion dynamics that can explain phenomena such as unequal
representation in opinion distributions in online platforms. (Publication 2.1, Publication 3.1)

2. Improve our tools and unify the framework to describe the addition of negative interactions in networks
of online social interactions, with a special focus on polarization

• Develop methodology for the mining of signed networks and their polarization study (based on
balance theory) from social media environments. (Publication 1.1)

• Combine temporal and multilayer structures with the aforementioned methodology in a robust
manner. (Possible extension)

• Characterize the needed differences in methodology and approach between denser layers of the
networks and periphery. (Publication 1.2)

• Adapt Latent Ideology Space models to Signed Networks. (Possible extension)

3. Application of this methodology to available data

• Apply the designed methodologies to a variety of datasets and extract regular behavioural patterns
to characterize online user behaviour. (Publication 1.1)

• Clean and prepare suitable datasets for the analysis of signed networks. (Publication 1.1)
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2.2 Thesis Plan: Projects

• Project 1: Signed Networks and Polarization

– Keywords: Signed networks, Partitioning, Structural Balance, Polarization, Latent Ideology
Space, Multilayer networks, Temporal Network Analysis

– Type of research work: Data driven

• Project 2: Opinion Dynamics, homophily and competing minorities

– Keywords: Generative Network Model, Opinion Dynamics Model, Homophily, Preferential
Attachment, Social media, Affective Polarization, Elite Capture

– Type of research work: Theoretical modelling

• Project 3: Polarization and Rakings model

– Keywords: Ranking Algorithm, Polarization, Opinion Dynamics, Misinformation, Experimen-
tal Design

– Type of research work: Experimental

3 Research plan and projects

3.1 Project 1

This project serves as the main line of research of the Thesis, since it brings together all concepts mentioned
above: Social media platforms, Signed networks and Polarization.

Currently, the project is at an intermediate stage at which the state-of-the-art methodologies and the
data availability have been already explored. The first tangible outcome of this project is the preprint draft
for the first publication (see Publication 1 below for more details). After this sub-project, we plan to extend
and generalize the used methodology to obtain a framework easily adaptable to different data sources. The
next step will be, therefore, to mature the robustness of the methods and enhance the analysis with the
addition of new features in the analysis pipeline. The use of additional available datasets is crucial for the
success of these next steps.

3.1.1 Publication 1.1

Collaborators: Max Pellert, Vicenç Gómez, Simon Schweighofer, David Garcia.
Advice and feedback: Samin Aref

Status: 70 % complete (Preprint draft in final stages). Preliminary results accepted as a talk in several
conferences (IC2S2, NetSci and SunBelt). Also presented as a poster at WebSci. From the reviewer feedback
of NetSci some extensions are considered as a contingency plan: considering the use of different null mod-
els (see Publication 1.2) and the application of the methodology to different datasets (see Possible extensions).

Abstract:
Online media are widely held responsible for the rise of political polarization throughout the Western

world. But popular narratives of ’filter bubbles’ and ’echo chambers’ have recently been heavily criticized,
because users clearly do communicate with political opponents online [28]. So how do users of online media
polarize? We approach this question using a novel dataset, derived from the discussion forums of a major
German-speaking news platform. This dataset contains over 94,000 users and 46 million interactions between
them. Crucially, the interactions comprise up-votes as well as down-votes, and can thus be represented as
edges with both signed and temporal information. This unique combination of features allow us to investigate
the formation of political alliances and the emergence of political conflict in real time. We focus on debates
surrounding the highly contentious European refugee crisis (2015-16), a notoriously turbulent year regarding
corruption scandals which led to the Austrian government collapsing (2019) and the months comprising the
start of the COVID-19 pandemic (2020).
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We theorize political polarization as an increase of structural balance between actors with opposing
ideological positions (see [33]). We test this model by quantifying the trajectory of structural polarization
in the network of signed interactions as a longitudinal user analysis across years (similarly done in [20]). We
do so by finding an optimal bi-partition of the signed network and defining a normalized upper bound of
balance based on the amount of frustrated edges in that partition (i.e. edges that violate the assumptions
of our partition model) [21].

Our results are congruent with the political developments over the same period: Overall, the level of
structural polarization is increasing, and moments of acute political crisis and conflict coincide with peaks
in structural polarization. Following a start of the migration crisis where humanitarian help and unity
prevailed, several controversial government decisions increased the social tensions from the start of 2016.
This led to abrupt alternations of power by very different political parties in the small interval of five years
(2016-2020). We examine the context of the peaks in polarization through a detailed analysis of the social
and political circumstances of each time period provided by the news articles texts. Moreover, we zoom
in the mechanisms from which polarization increases in moments of crisis and find that, while divisiveness
between partitions stays constant and high throughout the time period, cohesiveness within groups is what
drives the changes in our polarization score.

More details in appendix A.

3.1.2 Publication 1.2

Collaborators: Max Pellert, Vicenç Gómez, Simon Schweighofer, David Garcia.
Advice and feedback: Samin Aref

Status: 30 % complete.

Description:
When designing the appropriate normalization factor for our Signed Polarization Score (see Appendix

A), we encountered differences in the balance encoded in the underlying unsigned network depending on the
density level: deeper, more connected, layers of the networks display larger baselines of polarization procured
by the unsigned structure. We believe this can be related to the fact that users can recognize each other in
inner layers and therefore positive interactions already encode most of the structural information.

These findings provide a strong point for differentiating between network structures when performing
these types of analysis. Moreover, it shows a relevant pattern of human behaviour that is exhibited in
real life systems. For this reason, we believe there is value in approaching these results more formally,
and compare it across platforms. The collection of results from these exploration would be gathered in
Publication 2 from Project 1.

3.1.3 Possible extensions

As mentioned above, the following steps of this project that serve as possible extensions to Publication 1.1,
are:

• Methodology extension: Use of Stochastic Degree Sequence Model (SDSM) [34] for the mining of signed
networks instead of the use of arbitrary thresholds.

• Methodology extension: use of temporal information dynamically. Use of rolling window measures
instead of fixed arbitrary time windows.

• Methodology extension: Adaptation of Latent Ideology Space Models [28] [29] [35] to signed networks.

• Data extensions: application of the methodology to some of the datasets below (in order of relevance).

– Inferring signed networks from interactions on user-generated content in Wikipedia, similar to
[11],[12]. Can also compare between different languages.
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– Debagreement [9] : 42,894 comment-reply pairs from the popular discussion website Reddit,
annotated with agree, neutral or disagree labels.

– BirdwatchSG [10]: signed edge-attributed, multi-edge, directed graph with 441, 896 edges between
2, 987 Birdwatch participants (nodes) based in the USA, and spanning 1,020 diverse topics prone
to misleading content and/or partisanship.

– TwitterSG [10]: signed edge-attributed, multi-edge, directed graph with 12, 848, 093 edges be-
tween 753, 944 Twitter users (nodes), spanning 200 sports-related topics: teams, sports, players,
managers, and events.

– Epinions [13]: Dataset based on the 841, 372 ratings of helpfulness of reviews from 131, 828 users
in a product rating website.

– Slashdot [14]: Dataset based on 516, 575 friend and foe links network between 77, 357 users of a
technology news platform.

– BitcoinOTC and Bitcoin Alpha [15]: who-trusts-whom graphs of 3, 783-5, 881 users with 24, 186-
35, 592 edges who trade using Bitcoin on online platforms, in which reputation is important due
to anonymity.

These extensions are not strict parts of the plan but serve as plausible topics towards which to re-direct
the main project if needed.

3.2 Project 2. Publication 2.1

Collaborators: Elise Koskelo, Adam Finnemann, Ben Genta, Rachel Freedman.

Advisors/mentors: Mirta Galesic, Henrik Olsson, Fariba Karimi, Tamara van Der Does, Maria del Ŕıo
Chanona, Jonas Dalege

Status: 50 % complete. Literature Review, Design of methodology and Code preparation and testing done.
Experiments pending. Objective: preprint draft by January 2023

This project was conceived during the Complexity-GAINs International Summer School, organized by
the Complexity Science Hub (Vienna) and the Santa Fe Institute.

It is based on an extension of an already existing model, by [36], in which the creation of a social network
can be tuned according to different connection preferences between different groups. In our case, the project
is restrained with the case of one large majority and two minorities that oppose each other. The main goal
is to assess the effect of these network structures on the distributions of opinions, that are associated in a
flexible manner with group identity. For that, we design and propose a new opinion dynamics model that
fits the project’s needs.
More details in appendix C.

3.3 Project 3. Publication 3.1

Collaborators: Vicenç Gómez, Fabrizio Germano.

The third project will analyze polarization from a different perspective than the previous ones. In this
case, we will design an experiment to gather data and try to provide empirical evidence of complex phenomena
related to polarization as predicted by a mathematical model.

In particular, we will build on the results in [37]. In this work, a model of opinion dynamics is presented
where a platform ranks incoming news items, while individuals sequentially access the platform to decide
which news items to view and possibly highlight (e.g., like, share or retweet). Some key features of the
model are that (i) the platform uses an algorithm based on popularity of the news items and personalization
of certain key individual characteristics, (ii) the platform cares about profits, (iii) individuals are driven
by behavioral traits such that they have some preference for confirmatory news as well as to read higher
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ranked news, (iv) they highlight news that is sufficiently close to their prior beliefs and the more so the more
extreme their prior beliefs are [38].

The authors in [37] showed analytically and via simulations is that a profit-maximizing platform will tend
to choose higher than efficient popularity and personalization weights, both of which result in polarization
and misinformation with users reading and sharing higher amounts of extreme (and not so accurate) content
and lower amounts of less extreme (more accurate) content.

We plan to extend the work by providing empirical evidence of the phenomena captured in the afore-
mentioned (or a simplified version) model and simulations through a designed experiment involving human
participants and a simplified platform. The first task will be to design an experiment. For that we will follow
a similar methodology as done in a previous work of the thesis supervisor Vicenç Gómez [39].

3.4 Planification timeline

Regarding the time management of the projects, as mentioned above, project one serves as the basis of the
Thesis and therefore is comprised of several sub-projects. These projects will be carried out during the full
duration of the PhD (see 1). The other two projects have a limited duration and will be taken on sequentially.

In Figure 2 it is shown the activities and time organization of the first year. While some of the activities,
like PhD seminars and participation in particular summer schools and conferences, belong singularly to the
first year, other activities such as teaching duties and participation in the CSS Lab Austria reading group
and seminars will continue throughout the four years.

Concerning location, in order to maintain contact with CSS Lab Austria and my co-supervisor David
Garcia, and considering I already did a stay with his group at the Complexity Science Hubin Vienna, I plan
to visit the group in University of Konstanz during the third year.

Figure 1: Project and location timeline
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Figure 2: First year goals, activities and outcome
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[39] Fabrizio Germano, Vicenç Gómez, and Gaël Le Mens. “The few-get-richer: a surprising consequence
of popularity-based rankings”. In: The World Wide Web Conference. 2019, pp. 2764–2770.

[40] Dorwin Cartwright and Frank Harary. “Structural balance: a generalization of Heider’s theory.” In:
Psychological review 63.5 (1956), p. 277.

[41] Samin Aref, Andrew J Mason, and Mark C Wilson. “A modeling and computational study of the
frustration index in signed networks”. In: Networks 75.1 (2020), pp. 95–110.

11

https://doi.org/10.1038/s41598-022-05434-1
https://doi.org/10.1038/s41598-022-05434-1


[42] Patrick Doreian. “A multiple indicator approach to blockmodeling signed networks”. In: Social Net-
works 30.3 (2008), pp. 247–258.

[43] David Schoch. signnet: An R package to analyze signed networks. 2020. url: https://github.com/
schochastics/signnet.

[44] Xindi Wang, Onur Varol, and Tina Eliassi-Rad. “Information access equality on generative models of
complex networks”. In: Applied Network Science 7.1 (Aug. 2022). doi: 10.1007/s41109-022-00494-8.
url: https://doi.org/10.1007%2Fs41109-022-00494-8.

[45] Peter Turchin. “Modeling social pressures toward political instability”. In: Cliodynamics 4.2 (2013).
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[47] Olúfmi O Táıwò. Elite capture: How the powerful took over identity politics (and everything else).
Haymarket Books, 2022.

A Publication 1.1

A.1 Prior work, background and definitions

Given a signed graph that represents our network of positive and negative interactions, we can assess its
structural balance as a binary condition: either it is balanced or not. When generalized to this framework,
a signed network is balanced if it can be partitioned into k ≤ 2 such that all negative edges fall outside the
partitions and all positive edges fall within the partitions. Balance can also be defined by the absence of
cycles containing an off number of negative edges [40]. For unbalanced graphs, a measure for partial balance,
which denotes how far is the network from being completely balanced, can be obtained from different means:
signed triangle count[19], walks [22] or frustration [21]. The latter is based on a Frustration index, that is
obtained from the count of frustrated edges (i.e. edges that violate the assumptions of the optimal partition
model).

Following [21] notation, we represent an undirected signed graph with G = (V,E, σ), where V are the
set of n nodes, E the set of m edges and σ is the sign function that maps the edges to their given sign
σ : E → {−1,+1}. Given a partition P = {X,V \ X}, the frustration count will be the sum of the
frustration state of all edges, fG =

∑
(i,j) fij , where fij equals 1 for frustrated edges and 0 for non-frustrated

edges. The problem thus is stated as finding the optimal partition P ∗ such that the amount of frustrated
edges is the minimum possible. This will be the correct description of partial balance of the network. The
globally optimal solution then should satisfy L(G) = minX⊆V fG(X).

The computation of L(G) is NP-hard given its relation to the EDGE-BIPARTIZATION unsigned graph
optimization models and the MAXCUT graph optimization problem [41]. For small scale networks, however,
it is possible to use an efficient way to compute the frustration index exactly [21]. This method is based on
binary linear programming formulation and allows to make use of specific speed up techniques and powerful
mathematical programming solvers.

For large scale networks there are several ways to approximate the solution of this optimization problem.
For example, Doreian and Mvar apply Blockmodeling to this problem in [42], in which they optimize the
criterion function P (X) = Ef,p+Ef,n via a relocation algorithm, with Ef,p defined as the frustrated positive
edges and Ef,n the frustrated negative edges. This method together with simulated annealing provides
partitions that can define a good approximation to L(G). We use the implementation of this model through
the library Signnet in R [43]. Any approximated value for L(G) will therefore be an upper bound on the
minimum number of frustrated edges.

A.2 Methods (contributions)

The intuition is that, given a system defined by a signed network, the minimum amount of frustrated edges
will hint the degree up to which this system can be easily separated into groups. Moreover, we understand
this level of separation as direct measure of polarization. We approach the idea of polarization from a
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structural point of view, given that the network structure already encodes bimodal interactions, we can
presume it to be intrinsically related to affective polarization.

The next steps are: 1. Providing a formal definition of polarization in this framework, and 2. Examining
to what extent this measure is given by the sign distribution and not the unsigned backbone of our networks.

Since we are interested in quantifying polarization in our networks we look for an index that ranges from

0 to 1, such as 1 − L(G)
m/2 , with 1 being the completely balanced case. The m/2 term accounts for different

network sizes. The relation between these different concepts in our framework, then, is that balance and
polarization are equivalent and both grow in an inverse trend compared to frustration in the system. The
more frustration there is, the more blended the groups are, and the less polarized the global community is.

We describe the Signed Polarization Index as:

SPI = 1− L(G)

m/2

Secondly, to assess the variation of this index in the DerStandard networks we normalize the score by
extracting the amount of polarization encoded in the unsigned structure. This is done by simply averaging

over several measures of 1 − L(G)
m/2 in the network with randomly re-distributed sign attributes (Gshuffled).

This baseline is constant along different instances of networks for the Derstandard data source.

SPIglobal = SPI(G)− SPI(Gshuffled)

A.3 Data

DerStandard is one of the largest newspapers in Austria. Its online community is highly engaged and the
platform has not suffered any relevant collapse or large shift of users in the previous decade. For example,
the site had almost 57 million visits in November 2020.

Our dataset focuses on the forum nature of the Derstandard site and includes the unique user identifiers,
the text of each posting, the timestamp of the posting, the article id under which the posting was published,
the thread status of the comment (original or reply) and the list of like and dislike voters for each comment.
The combination of these features in a dataset is unique and novel: We can combine explicitly signed (positive
and negative) interactions on a large-scale on (political) topics for a long time frame.

DerStandard has a stable and active user base thanks to human-driven moderation schemes to deescalate
conflict and promote healthy and insightful discussions. This platform is also established and therefore
does not have strong influxes of users or sudden large losses of users. For those reasons, we can take in
consideration only users that voted at least once every year in our chosen time period. This allows us to find
around 14K users that can be tracked during 7 years.

From this data, we construct signed networks that capture the status of the interaction between pairs
of users at a given time window. To have sufficient data to build a signed network, we use a 3-month time
window to convert votes data into signed networks based on normalized scores between -1 and 1. We remove
a small fraction (less than 1%) of edges with perfect balance, i.e. a score of exactly zero. Since we study 7
years, we obtain 28 signed networks, one for each quarter, describe the relationships between the users in
DerStandard.

For each of these networks, we analyze the largest connected component. Note that some users might not
be active in a given time window, thus the size of the network changes over time. Networks in our analysis
have an average of 7236 nodes (sd = 612) and an average number of edges of 506454 (sd = 169833), thus
having an average density of ρ = 0.02. Since we correct for the positivity bias in votes, the proportion of
positive edges is centered around an average of 0.51 with a standard deviation of 0.02.

The extensive time frame of our observation period covers events including the highly contentious Eu-
ropean refugee crisis (2015-16), a notoriously turbulent year regarding corruption scandals which led to the
the dissolution of the Austrian government coalition (2019) and the months comprising the start of the
COVID-19 pandemic (2020). The inclusion of the year 2014 allows us to compare possibly turbulent years
with more calm times as a baseline.
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Figure 3: Timeline of events and government coalitions showing the Global Signed Polarization Index for
each time window network. Confidence intervals are provided based on bootstrapping. Political ideology
dominating the government is represented as the alignment with parties at the European level and specific
controversial events as well as elections are shown for social and political context.

A.4 Preliminary results

Polarization timeline

We see that an underlying polarized structure is present and that the level of polarization of the com-
munity is reactive to societal and political changes, within considerably narrow time-frames.

We find that the Signed Polarization Index SPI(G) of the networks with shuffled signs, is stable through
the time windows and stays in low values, while SPI(G) for the real networks has larger variability and is
centered around higher values (Figure ??). The fact that this result is consistent for all time windows denotes
that the signed structure of the networks encodes relevant information that, even if maybe not understood
in absolute balance terms, provides an intuition of an underlying preference towards more balanced states.

Given the corrected measure, SPIglobal, we examine the fluctuations and behaviour of this measure
longitudinally through the timeline. Polarization measures are variable with respect to time and seem to
follow an increasing trend. However, this trend is clearly non-linear, it seems to peak at certain time windows
and decrease especially towards 2020.

To provide an objective intuition in what are the relevant events influencing the perturbations of polar-
ization values, we perform a simple frequency study of words that are more present in the aggregated article
text in each specific quarter compared to the full corpus.

Looking at the variations in more detail we identify a calm baseline start for 2014 and the start of 2015,
followed by a large increase that peaks at the first quarter of 2016. This first large increase could be related
to the shift in public opinion regarding the migration crisis, which provided a controversial situation that
broke the traditional left-right wing scheme and social tension was higher.

After that, a period of strong government instability followed, and we can see polarization peaks co-
inciding with election periods. For context, two other largely controversial and commented events: 1.The
very inadequate wording of the far-right Prime Minister at the time, Herbert Kickl, relating ”concentration
camps” and migrants and 2. A largely discussed corruption scandal involving Strache, the Vice-Chancellor
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at the time, which led to government collapse.

Figure 4: Proportion of active nodes that belong to each partition for each time window (upper figure)
and basic measurements of the partitions for all time windows (lower figure): proportion of edges that are
internal to one of the partitions, proportion of total frustrated edges, internal frustrated edges (negative)
and external frustrated edges (positive).

Meso-measurements: zooming into the polarization mechanisms

By examining the combination of edge characteristics: internal (between nodes of the same partition)
or external (between nodes of different partitions), together with the frustration state of the edge, we can
describe in more detail the mechanisms underlying the timeline results of 3.

In Figure 5 it is shown that consistently around 60% of the edges are internal. Therefore, the underlying
unsigned structure already favours the partitions. We also see that frustrated edges account for around 30%
of the edges and are mostly internal (negative inside partitions).

By checking the meso-scale balance measurements we reach an interesting conclusions: First of all,
both measures reach high values, but divisiveness is mostly higher or equal to cohesiveness. However,
cohesiveness has higher variability and reaches high values for high polarization moments (see Figure 5).
Both of these observations point out that our stronger polarization times are given by stronger cohesion
inside the partitions, instead of stronger disagreement between the two groups. Also, since internal negative
frustration is higher, it would mean that most of the frustration that impedes a clean separation into two
groups is given by disagreements within groups, more than unexpected agreements between opposing groups.

15



Figure 5: Meso-scale measurements, cohesiveness and divisiveness, for the partitions obtained in each time
window with density distributions of each measure. Divisiveness stays at a large value and has one single
mode, while cohesiveness fluctuates between two main modes. Note that both measures stay above 0.6,
which denotes a significant balance present at all times.

A.5 Conclusions and discussion

Conclusions from the study of DerStandard, related to this particular platform and not directly generalizable:

1. Finding that large scale online political discussions display an underlying polarized structure based on
balance.

2. Polarization is a dynamic, reactive phenomenon subject to current political and social events. In this
case it affects the community in general, even when only looking at votes regarding any issue or topic.

3. Changes in polarization are driven by stronger cohesion, opposite to what it is speculated (stronger
disagreement between communities).

General statements:

1. We provide the first temporal analysis of structural balance in large scale online political discussions.

2. Given the fluctuations of the partitions and distinctive behaviours in specific points: Our SPI is reactive
to external social and political context with short-term responses.

Other contributions of this work:

1. Curation and first analysis of a novel dataset, from a platform with good moderation dynamics and
extremely loyal user base.

While the results obtained are robust under severa sanity checks, there are some challenges in the use
of this methodology. The following are the main limitations that we encountered and the strategy used to
tackle them:

1. Arbitrary choice of time windows. To account for the choice of 3-month time windows and the robust-
ness of the results, all measures were compared with those obtained from the aggregated network of 7
years.

2. Assumption of two partitions. Other work has also focused in polarization between more than two
groups [29] [31]. In our case we assess the benefit of adding an extra group, which lowers the amount of
frustrated edges, balanced with the robustness of the partitions obtained with three groups. The three
group partition does not maintain under the robustness check when using the aggregated network.
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3. Application to one single platform. Results are not easy to generalize given the unique nature of the
dataset. This can be fixed by the analysis and validation of the method on the Wikipedia or Birdwatch
data.

B Publication 2.1

B.1 Prior work, background and definitions

In this paper, we start from an important network theoretical result showing how minorities’ online visibility
is limited by two common principles of human behavior in social environments.

[4] and [36] study network structures based on PA and tuned with different parameters of homophily.
They show that node degree based recommender systems will not represent minorities adequately given
certain states of the parameter space. Google’s PageRank algorithm and Twitter’s WhoToFollow algorithm
are influential examples that suggests information and followers based on node degree[4].

[44] extends this work by studying the consequences of homophily and PA on simple and complex conta-
gion processes such as information spread. They demonstrate a complex relation between network structures
and contagion properties and a general ‘price of fairness’: ensuring information equality comes at the cost
of spreading efficiency, and vice versa.

In this paper, we study a related but different scenario. Our first research question asks how homophily
and PA influence minorities’ ability to overtake the general opinion. Secondly, we are interested in how
minorities’ opinion dynamics change as we introduce multiple conflicting minorities.

According to [45], conflicts between elite minorities has historically led to social unrest by destabilising the
ruling powers. Troubles between minorities is not limited to the powerful classes. In any normally distributed
opinion there exists two tails of small strongly conflicting minorities. Secondly, seemingly united minorities
break into conflicting sub-communities such as the division of the Reddit based ‘anti-work’ movement into
conflicting ‘work reform’ and ’anti work’ sub-movements.

To study this, we extend the work of [36] with the use of an opinion dynamics model, to see if network
structures originated from different homophily and PA settings have an effect on the final representation
and distribution of opinions. For this, the group identity label is set as a fixed attribute to each node,
while the opinion on a certain issue is allowed to shift given certain rules: each group has an initial and
continuous preference for an opinion, but some individuals may be convinced by their surroundings to shift
to the other group’s opinion. While we expect the outcome of these simulations to resemble the conclusions
[36] extract from the study of rankings, the relation between the two is not trivial, as network structure plays
a different role in the performance of opinion dynamics models. For example, highly segregated networks in
high homophily settings may benefit minorities in the rankings (preservation of degree) but would not allow
their opinions to gain control of the discussion.

B.2 Methods (contributions)

Our model consists of two steps. First, we generate a network with different parameters of interests. This
model is an extension of the directed preferential attachment with homophily(DPAH) network model de-
veloped in [36]. Second, we run an Boltzmann opinion dynamics model on the networks to study how
parameters related to the DPAH affects opinion spreading.

B.2.1 Network model

Following [36] we let G = ⟨V,E,C⟩ be a directed graph (“digraph”) where V = {v1, v2, . . . , vN} is a set
of N vertices, E ⊆ V × V is a set of M edges, and C ∈ LN is a list of N class label from the label set
L. This graph represents a social network with |L| distinct classes. Each vertex vi represents an individual
belonging to class ci ∈ L. For example, if the classes are popular American political stances, each vertex
will be labeled from the 3-element label set L = {democrat, moderate, republican}. Finally, each directed
edge eij indicates that individual i has initiated connection with individual j. For example, if we apply this
model to Twitter, then an edge eij indicates that i “follows” j, and if we apply this model to an academic
network, then it indicates that i cites j.
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The network is grown by first selecting a node i with probability P (βi) where βi is a node specific fixed
activity level. As Twitter activity has been empirically shown to mimic power laws βi is drawn from such
with exponent γ [36]. The next step is to determine who i is going to follow. This decision is shaped by
homophily and preferential attachment which are explained below. The overall process of drawing followers
and identify targets is repeated until our stopping condition, e = dn(n−1) with d being a density parameter,
is reached

Preferential attachment: That few nodes posses a disproportionate amount of edges is a frequent feature
of networks across the the physical, biological, and social world. Preferential attachment states that nodes
acquire new edges with a probability proportional to its existing number of edges implying a rich-gets-richer
like dynamic for edge generation. Mathematically we say that the probability of node i follows j, P (i → j),
is proportional to the in-degree of j, ki

P (i → j) =
kj∑n
l=1 kl

(1)

Homophily: A central function of our class attributes C is to facilitate homophilic edge generation, that is,
the tendency for similars to connect. In our case, high homophily parameters will mean edges are more likely
to form within classes. The exact probabilities are controlled by a set of homophily parameters. For each
class there are three homophily parameters, one for in-group preference and two for out-group preferences.
With three classes we have a total of nine homophily parameters (Majority: hMM,hMm1, hMm2. Minority
one: hm1m1, hm1M,hm1m2. Minority two: hm2m2, hm2M,hm2m1). We constrain the majority to have
equal preferences for each minority (hMm1 = hMm2) and we assume each class’ homophily parameters to
sum to one. Because of the symmetry between the minorities we end up with two homophily relations with
three parameters free to vary.

1 = hMM + 2hMmi, 1 = hmimi + hmiM + hmimj (2)

In equation 3 we unite preferential attachment and homophily into our three class directed network with
preferential attachment and homophily model.

P (i → j) =
hijkj∑n
l=1 hijkl

(3)

A core feature of digital services is recommending films, who to follow, answers to searches, etc. These
processes rely on recommender algorithms often based on network properties to rank and identify optimal
recommendations for users. For instance, Twitter employs a Who-to-Follow (WTF) algorithm to suggest
following options. Notably, WTF works locally and obtains different recommendations for different nodes.
Thus, to obtain an overall ranking of users we sum how often they are recommended to any nodes.

B.2.2 Opinion Contagion Model

Spreading of ideas is a complex contagion. While exposure to a single infected neighbor may be sufficient
to infect an individual with a disease, individuals typically require exposure to an opinion from multiple
sources before they adopt it as their own. We therefore develop a novel opinion contagion model governing
the spread of opinions across our network.

Our model has two core components: neighbor agreement and class consistency. We introduce a “soft-
max” or “Boltzmann” model of contagion, with two key benefits: 1) the probabilistic nature of the model
captures the stochasticity in opinion change; and 2) the summation allows our model to generalize to variable
numbers of groups.

Neighbor Agreement

Neighbor agreement captures individuals’ propensity to adopt opinions that are popular amongst their
neighbors. Let Ni(ω) be the number of vertices in vi’s neighbor set that hold opinion ω. Ni(ω) =
Σvj∈Ni

I(oj = ω), where I(·) is the indicator function, which equals 1 if the predicate is true, and 0 other-
wise. The likelihood that vi also holds opinion ω should be correlated with Ni(ω), but it is still possible for
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vi to agree with a minority of its neighbors, so we use a softmax neighbor agreement model in which the
probability that vertex i takes opinion ω ∝ exp(Ni(ω)).

However, vi may be more influenced by some neighbors than others. For example, vi may be more
likely to agree with neighbors of the same class, or neighbors that are more central to the network. We
therefore define a score si(vj), which gives the weight that vertex vi places on neighbor vj . According to
the weighted softmax neighbor agreement model, the likelihood that vertex vi has opinion ω at the next
timestep Pna(o

t+1
i = ω) is shown in Equation 4.

Pna(o
t+1
i = ω) =

1

Z
· exp(

∑
vj∈Ni

si(vj)I(o
t
j = ω)) (4)

Z =
∑

ω∈Ω Pna(o
t+1
i = ω) is the normalizing factor. Note that this model is not specific to two or three

groups, and can generalization to as many distinct groups as neccessary.

Class Consistency

Class Consistency captures individuals’ tendency to adhere to the opinion that is most consistent with
their class. For each class, we define a default opinion ωdef . An adherence parameter, αi ∈ (0, 1), modulates

the tendency of individual i to adhere to their class-based default opinion ωdef
i . Specifically, ot+1

i = ωdef
i

with probability αi, and ot+1
i is governed by Equation 4 with probability 1− αi. In this way, αi modulates

the tradeoff between class consistency and neighbor agreement in opinion updating.

Combining class consistency and neighbor agreement, the probability that node vi will have opinion ω
at time t+ 1 is specified in Equation B.2.2.

P(ot+1
i = ω) = αi · I(ω = ωdef

i )
+ (1− αi) · 1

Z · exp(
∑

vj∈Ni
si(vj)I(o

t
j = ω))

The opinion of a given individual at the next time-step depends on both the opinions of its neighbors
(neighbor agreement) and the default opinion of its class (class consistency) while its adherence parameter
modulates the trade-off between these influences.

Experimental configuration

The selection of homophily parameters and minority size will depend on the experiments performed.
However, some variables are fixed for all of the following results.

We work with networks of N = 2000 nodes and set a density threshold of d = 0.0015. We set the activity
of nodes to follow a power-law distribution with exponent γ = 3. All homophily parameters are symmetric
with respect to minorities-majority. In these initial simulations, we keep the score of all nodes constant so
that si = 1 for all i.

B.3 Preliminary results

To get a sense of the importance of each parameter in the rankings, we first produce nine simulations to
examine relevant combinations of homophily parameters, allowing them to be: very low (0.1 or 0.2), neutral
(0.5 or 0.33), or very high (0.8 or 0.9). The two options are selected regarding summation rules from Equa-
tion 2. By assessing the proportion of minorities in the top 50 rank of PageRank (Figure 6), we conclude
that the nature of the majority is the most relevant: simulations II, V and VIII produce a peak and have a
heterophilic majority, while simulations III, VI and IX have a homophilic majority and are lowest. When the
majority is neutral, homophilic minorities (simulation I) achieve higher presence in rankings, while neutral
and heterophilic minorities are underrepresented in the top 50 (simulations IV and VII).

Replication of results for one minority and expansion of the model

Here, we present our replication of the model presented in [36]. The central challenge here is to make
our 2-minority model mimic the original model with just a single minority. Since our model has more
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Parameters/simulation
hMM
(within majority)

hMmi

(majority to minorities)
hmimi

(within minorities)
hmimj

(between minorities)
hmiM
(minorities to majority)

Simulation I: neutral M, homophilic m 1/3 1/3 0.9 0 0.1
Simulation II: heterophilic M, homophilic m 0.2 0.4 0.9 0 0.1
Simulation III: homophilic M, homophilic m 0.8 0.1 0.9 0 0.1
Simulation IV: neutral M, neutral m 1/3 1/3 0.5 0 0.5
Simulation V: heterophilic M, neutral m 0.2 0.4 0.5 0 0.5
Simulation VI: homophilic M, neutral m 0.8 0.1 0.5 0 0.5
Simulation VII: neutral M, heterophilic m 1/3 1/3 0.1 0 0.9
Simulation VIII: heterophilic M, heterophilic m 0.2 0.4 0.1 0 0.9
Simulation IX: homophilic M, heterophilic m 0.8 0.1 0.1 0 0.9

Table 1: Exploration of different states of the parameter space for two minorities.

Figure 6: Percentage of minorities in top 50 nodes from PageRank ranking. Each datapoint corresponds to
one of the simulations of Table B.3.

homophily parameters the translation is not trivial. For this reason we tried two different ways of expanding
the four homophily parameters of [36] to our 3x3 matrix of parameters in the case of two minorities. Table
B.3 provides an explanation for the two cases: Simulation V I satisfies the summation rule (Equation 2)
regarding the normalization of the homophily parameters for each group, while Simulation V II does not.
By applying these parameters in our N = 2000 nodes networks, we find that Simulation V II replicates the
target results best (pink trajectories in Figure 7).We find good overall agreement between our results and
the original model, however, with one central differences. In our model we see a consistent dip at top-k%
Pagerang of 90%.

Despite slight differences we are generally able to reproduce the findings of [36] using the V II parameter
setup. Thus, we proceed with our novel two-minority experiments assuming the V II parameters. In all
experiments we fix the total minority size to a 20% of the nodes. We then study two double minority cases,
one where the initial minority fragments into halves (10% + 10%). In the second condition an additional
minority appears and doubles the overall proportion of minority nodes in the network (20%+20%). In both
conditions we set the homophily parameter between minorities to hmimj

= 0, as we assume them to be
conflicting.

Figure 8 depicts the ranking curves for our three cases: of a single minority (V II), a fragmented minority
(divided), and an additional minority (double). We see the largest differences between the groups in exper-
iment b (homophilic minorities and heterophilic majorities). We see the divided minority loses PageRank
representation relative to the others. The doubled minority also has a slight disadvantage to the single
minority case. In the neutral case (type c), the three conditions fares similarly however with the single
minority ranking higher overall. In last case of of homophilic majorities and heterophilic minorities, we find
no differences between the three conditions. Summarising these figures we see 1) multiple minority situations
are never better than single minority cases, and 2) differences are eliminated as longer rankings are considered.
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Figure 7: Upper part extracted from Figure 1 of [36]. Comparison of original results on a 20 node network
to our simulations on 2000 nodes, applying different versions regarding the expansion of the model. ME is
the mean distance of each point regarding the real proportion over all k of the rank. In our case we average
them over the r = 5 runs in each figure.

Parameters (a) (b) (c) (d) (e)

1 Minority (size: fm)
hMM 0.2 0.2 0.5 0.8 0.8
hmm 0.2 0.8 0.5 0.2 0.8

2 Minorities VI
(fm1 + fm2 = fm)

hMM 0.2 0.2 0.5 0.8 0.8
hMmi 0.4 0.4 0.25 0.1 0.1
hmimi 0.1 0.4 0.25 0.1 0.4
hmimj 0.1 0.4 0.25 0.1 0.4
hmiM 0.8 0.2 0.5 0.8 0.2

2 Minorities VII
(fm1 + fm2 = fm)

hMM 0.2 0.2 0.5 0.8 0.8
hMmi 0.8 0.8 0.5 0.2 0.2
hmimi 0.2 0.8 0.5 0.2 0.8
hmimj 0.2 0.8 0.5 0.2 0.8
hmiM 0.8 0.2 0.5 0.8 0.2

2 CONFLICTING
Minorities VII

(fm1 + fm2 = fm)

hMM 0.2 0.2 0.5 0.8 0.8
hMmi 0.8 0.8 0.5 0.2 0.2
hmimi 0.2 0.8 0.5 0.2 0.8
hmimj 0 0 0 0 0
hmiM 0.8 0.2 0.5 0.8 0.2

Table 2: Homophily parameters when extending the model of 1 Minority to 2 Minorities and the respective
values for each scenario type ((a), (b)...), also includes the fragmentation of the minority group into two
conflicting groups.
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Figure 8: Ranking curves of one 20% minority (following V II discussed previously), a divided 20% minority,
and the case of one 20% minority that is in conflict with another minority (in the point of view when this
other minority is part of the majority).
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Opinion dynamics

We studied opinion spread on two of the different network types: Simulation I is comprised of a neutral
majority and homophilic minorities, and Simulation IX comprised of a homophilic majority and heterophilic
minorities. For each experiment, a starting network of 2,000 nodes was chosen (e.g. Simulation I or Simu-
lation IX) and initial opinions were determined based on group membership, with 25% of the nodes given
a random opinion to allow for some diversity. Opinions were then updated for 1,000 nodes (on average) for
each Monte Carlo time step according to the Opinion Dynamics model over 200 time steps total. At each
time step, we tracked the total number Ni of each opinion group where i={M ,m1,m2}.

In Simulation I, we looked at two sub-cases: first, where the majority is not stubborn and the two
minorities are semi-stubborn ({αM ,αm1,αm2} = {0.05,0.5,0.5}), and second, where all groups are semi-
stubborn ({αM ,αm1,αm2} = {0.5,0.5,0.5}). We considered the same sub-cases for Simulation IX, as well as
two additional cases: one in which none of the three groups are stubborn (αi = 0 for all i)1 and another in
which the minorities are very stubborn while the majority is not stubborn ({αM ,αm1,αm2} = {0.05,0.8,0.8}).

In the results for the neutral majority/homophilic minorities we find an evolution towards near-equal
opinion group size when the majority is not stubborn (αM=0.05). However, in the case where the majority
is semi-stubborn (αM = 0.5), the majority opinion fraction NM/Ntot decreases from 0.8 to ∼ 0.6 by time
step 10 and remains there throughout the simulation. Thus, we find that the adherence parameter of the
majority can play a large role in governing opinion fractions in this network type.

These same subcases were investigated on the starkly different network type with a homophilic majority
and heterophilic minorities (Simulation IX). Interestingly, the results for these two subcases are indistinguish-
able from the previous network type (Simulation I). We do note, however, that these analyses consider only
the fraction of different opinion groups, and not the means by which the opinions have spread throughout
the network; we plan to study the distribution of opinions across the network in the future.

In the case where none of the groups are stubborn (αi = 0 for all i), we also find an evolution towards
near-equal opinion share, similar to the {αM ,αm1,αm2}={0.05,0.5,0.5} subcase. For the final subcase, where
both minorities are stubborn and the majority is not (αm2}={0.05,0.8,0.8}), an equal spread of opinions is
realized.

B.4 Discussion

Taken together, these simulation results indicate that the differing adherence parameters αi play a large
role in governing the overall opinion fractions in a given network. In future work, we would like to explore
the trade-off between α and network homophily by repeating these same sub-cases on the different network
types listed in Table B.3. In addition, we need to consider additional metrics for studying opinion spread
such as the distribution of opinions across the network. It is most likely in the sub-cases investigated here,
that opinion changes are occurring at boundaries between the majority and minority groups, but we would
like to verify this hypothesis.

Another interesting result to highlight is the case of two stubborn minorities and a not-stubborn majority
ran on Simulation IX (homophilic majority and heterophilic minority). Despite a homophilic majority, this
network realizes equal opinion fraction in very few time steps. This suggests that minorities may be able to
increase their opinion share throughout a network via a high connectivity with other groups (heterophily)
combined with strong adherence to their own group’s original opinion. More simulations are needed to verify
this claim, in particular, as mentioned above, to study whether this result occurs for the same combination
of adherence parameters on different network types.

The main goal in creating such models is to idealize the models to a point that can give us some insights
about actual opinion spread. Thus, once we finish our analysis of the the trade-off between the homophily
and the adherence parameter, we will look for data to validate our model’s empirical validity. A natural
place to start would be to look at Twitter data, e.g. such as that in [46]; this study analyzes an individual’s
‘threshold’ to join a collective protest. This might give us a sense of what are reasonable (or actual) adherence
parameters shared by a population.

Another important use of network models is to test the plausibility of theories in less formal domains.
Our model seems well-suited to test some of the claims made in the growing literature on so-called ‘elite-

1This case is similar to a majority-vote model
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capture’, the phenomenon when a minority has disproportional political and epistemic influence due to its
powerful status [47].
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