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Abstract: We consider a system of bosonic particles trapped in a one-dimensional optical lattice
which we describe by the Bose-Hubbard model. The system properties, e.g. energy spectrum, are
studied for different number of particles and interaction strengths. First, we consider the case of a
single component, discussing in detail the non-interacting and strongly interacting regimes. Then
we consider the case of two components, focusing on the particular case of impurities.

I. INTRODUCTION

The Bose Hubbard model is one of the simplest mod-
els that is able to capture the behaviour of interacting
bosons in an optical lattice [1]. That is why it has been
widely studied in the fields of cold atoms and quantum
simulators [2]. This model shows several phenomena aris-
ing from the quantum many-body properties, such as the
existence of a quantum phase transition between a Mott
insulator and a superfluid phase [3].

In this work we use the one-dimensional (1D) Bose-
Hubbard Hamiltonian (BHH) to describe a system of
trapped interacting bosons in a periodic lattice. In or-
der to study the model we have identified limiting cases
where analytic predictions can easily be obtained, i.e.
non-interacting and strongly interacting limits. Beyond
this analytical study we have numerically obtained the
spectrum for an arbitrary interaction strength by direct
diagonalization of the Hamiltonian. In particular, we
have studied the system with periodic boundary condi-
tions and different species of atoms, number of particles,
etc. The exact diagonalization task can be computation-
ally hard when the size of the Hamiltonian matrix is very
large. That is why we focus on the case of few sites and
particles. Even so, obtaining the full energy spectrum al-
lows for a deeper understanding of the model that other
approximate methods, such as Tensor Networks, cannot
provide.

We first present the theoretical framework of this
model in Section II. Then, in Section III we sketch the
main features of the Python program that we have de-
veloped. In Section IV we discuss the behaviour of the
system under different interaction regimes, in this case
for one single component. In Section V we bring our at-
tention to some interesting results for the two-component
case. Finally, in Section VI we provide a summary and
the main conclusions of our work.

II. THEORETICAL FRAMEWORK OF THE
MODEL

We consider a bosonic species trapped in a 1D optical
lattice with contact-like pairwise interactions, described
by a BHH. We assume the system to be well defined

when the lattice potential is deep enough and particles
become localized in each potential well, which we refer to
as sites [1, 4]. By relying on the lowest Bloch band the
BHH is given by:

HBH = −J
M∑
i=1

(â†i âi+1 + h.c.) +
U

2

M∑
i=1

n̂i(n̂i − 1). (1)

Where âi is the annihilation operator for a boson at site
i and n̂i is the corresponding number operator. The first
term describes the hopping of one boson between nearest-
neighbour sites with an strength J . The second term
accounts for the total interaction energy of the system,
where U is the interaction energy of a single pair. In
the BHH (1) the number of particles is conserved, thus,
in our analysis the number of particles in the system is
taken to be fixed.

For a two-component system, the hopping term is con-
sidered to be equal for both species but now we will have
two types of interactions: intra-species, proportional to
U , and inter-species, proportional to UAB . The resulting
Hamiltonian is,

HBH = −J
M∑
i=1

∑
α=A,B

(â†i,αâi+1,α + h.c.)+

+
U

2

M∑
i=1

∑
α=A,B

n̂i,α(n̂i,α − 1) + UAB

M∑
i=1

n̂i,An̂i,B .

(2)

III. METHODOLOGY

We have created a Python program which provides the
eigenvectors and eigenenergies of Eqs. (1) and (2). We
can choose the value of the different parameters of the
Hamiltonian, such as the number of particles, number of
sites and the values of U and UAB . The value of J is
taken as the energy unit. Then, we express the Hamil-
tonian in a matrix form and diagonalize it to obtain its
eigenvalues and eigenvectors. We always work with pe-
riodic boundary conditions, although the program works
with open conditions as well.

In order to express the Hamiltonian in a matrix form
we need a Fock state basis. Defining the Fock state basis
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FIG. 1: Basis dimension (left) and time performance of the
code (right) as a function of the number of particles and basis
dimension, respectively. The computations have been per-
formed on a intel I7 dual-core processor.

properly is crucial: it is formed by all the possible com-
binations of the particles in the sites, avoiding double-
counting, since particles of the same species are indistin-
guishable. With N being the number of particles and M
being the number of sites, the dimension of the basis is:

#states =
(
M+N−1

N

)
= (M+N−1)!

N !(M−1)! [5].

For two different bosonic components the total
Fock basis is given simply by the product of the
Fock basis of each component separately H =
HA

⊗
HB . The notation we use for these states is

|nA,1nB,1, ..., nA,inB,i, ..., nA,MnB,M 〉, being nA(B),i the
number of A(B) particles in site i and NA(B) =∑M
i=1 nA(B),i.
It is important to optimize the time used in the gen-

eration of this basis, since its dimension grows exponen-
tially with the number of particles and sites. After several
tests, the most time-effective method was extracted from
combinations with replacement provided by the Python
library itertools [6], see Fig. 1.

To test the results, the outcome was compared to the
values obtained with the density matrix renormalization
group (DMRG) method [7] with certain number of par-
ticles and open boundary conditions. The results agreed
with machine precision.

IV. SINGLE COMPONENT CASE

In this section, we consider the one-component system
to discuss its main properties as we vary the parame-
ters of the model. To guide the discussion it is useful to
first describe two limiting cases where analytic results can
be obtained. These are the non-interacting or the only-
interacting cases, which correspond to neglecting the U
or J terms in the BHH, respectively. This allows us to
derive the ground state analytically for different number
of particles.

A. Non-interacting case

With no interaction, the resulting ground state is a
completely delocalized wavefunction throughout the lat-
tice. This ground state can be constructed with the

FIG. 2: Colormap of the probability for each Fock basis state
in the ground state for M = 4 sites and NA,B = 1 in terms of
r. States 1,6,11 and 16 correspond to states where a pair AB
is localized in a lattice site, such as |AB, 0, 0, 0〉. States 3,8,9
and 14 correspond to states such as |A, 0, B, 0〉. Note that all
states have the same probability for r = 1.

single-particle state, which is a linear combination of all
the Fock states. Since we consider all the particles to be

in the same state: | φSF 〉 ∝
(∑M

i=1 â
†
i

)N
| 0〉. This is

known, for a many-body system, as a superfluid phase [3].

B. Strongly interacting case

When the interaction dominates over the tunneling we
have two different behaviours. For attractive interaction
the energy is minimized when all particles are localized
together and the energy of the ground state is given
by Egs = UN(N − 1)/2. For repulsive interaction the
ground state is formed by those states that have the less
number of pairs localized in the same site. An important
parameter to consider in this case is the filling fraction
ν = N/M . In that case the energy of the ground state
will be given by Egs = UMνint(νint − 1)/2 + RUνint,
where R is the residue obtained from (N/M) and νint

is the truncated integer value of ν. Therefore, the sys-
tem prefers to have, if possible, the same number of
particles localized in each site throughout the lattice to
minimize the interaction energy. When the filling frac-
tion is an integer the ground state can be written as:

| φMI〉 ∝
∏M
i=1 (â†i )

ν
| 0〉. This is known as Mott insula-

tor phase [3].

V. BINARY MIXTURES

Now we turn our attention to the two component sys-
tem, which is described by Eq. (2). The intra-species
interaction U is considered to be repulsive and large,
compared to the tunneling rate, we fix it at U/J = 50.
We vary the inter-species interaction UAB by changing
the parameter r = 1 + UAB/U . An r towards negative
values means stronger attractive inter-species interaction
and an r closer to positive values means stronger repul-
sive inter-species interaction, being r = 1 the threshold
where UAB = 0. Other values of interest are r = 0 and
r = 2, since it is when | UAB |= U .

Treball de Fi de Grau 2 Barcelona, June 2020



Few-body study of the two-component Bose-Hubbard model Emma Fraxanet Morales

FIG. 3: Energy spectrum for M = 2 sites and NA = 1, NB = 4. We can see the structural change in the ground state for the
critical values r = 0 and r = 2, where in the zoomed areas we can identify as an avoided crossing. The general structure of
the spectrum is organized in three asymptotic behaviours labeled as a, b and c. The degeneracy for each of those asymptotic
behaviours is also presented: (2) corresponds to double-degenerated and (1, 1) corresponds to two asymptotic energy levels that
are non-degenerated. The combination of Fock states with higher probability for each of the asymptotic energy states is also
presented outside the figure.

A. Pair formation

In this section we consider the case where a pair is
formed. To do so we study the probability density of the
Fock basis states for NA = 1 and NB = 1 in M = 4 sites
depending on r. The discussion is illustrated in Fig. 2,
where we see that the ground state for r < 1 is a combi-
nation of the four possible states(labelled as 1, 6, 11, and
16 in the figure axis) where the AB pair is localized in site
1, 2, 3 and 4. Interestingly, this structure continuously
breaks when r ∼ 1, where all Fock states have the same
probability and thus we have a completely delocalized
wavefunction. Note that r = 1 corresponds to UAB = 0,
therefore we can describe the ground state as two sepa-
rate single-particle problems in M = 4 sites. Finally, for
increasing r > 1 there is a continuous change to other
formations with states of localized separated particles.

B. Impurity case study

Let us now consider the case in which the number of
atoms in one species is much larger than the number of
atoms in the other one, which is taken as an impurity. We
study the configuration of NB = M (νB = 1) and a single
A particle, NA = 1 in M = 2 sites. We noticed that for
weak |UAB | interaction, when the inter-species interac-
tion U/J = 50 dominates in the system we can interpret

the results as a frozen Mott insulator of B-particles and
a single-particle problem for the A-particle.

In the following subsections we discuss three relevant
features, the energy spectrum, the evolution of the first
gap and the structure of the ground state in the Fock
basis.

1. Energy spectrum

The energy spectrum is depicted in Fig. 3 as a func-
tion of r. The behaviour of the ground state shows two
clear changes for r = 0 and r = 2. The shape of the
energy spectrum is dominated by the interaction terms
and it has different bands which are separated in two
doubly-degenerated ones (a and c in Fig. 3) and two non-
degenerated bands with the same asymptotic behaviour
(b in Fig.3).

At first glance it could seem the lines experience a
crossing, but if we take a closer look we can recognize
an avoided crossing between a and b and b and c. There-
fore both the ground state and the first excited state
experience a continuous change, since every asymptotic
behaviour gathers two energy levels.

Treball de Fi de Grau 3 Barcelona, June 2020
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FIG. 4: Gap between the ground state and the first excited
state for different combinations of number of particles in M =
2 sites. We see clear differences for integer/non-integer filling
fraction of B particles. The + symbols correspond to the
analytical prediction from the perturbation theory described
in Section V C.

2. First energy gap

The gap between the ground state and the first excited
state ∆E = E1 − E0 is shown in Fig. 4. We expect it to
close around the values of r = 0 and 2 where we see the
avoided crossings in Fig. 3, since the energy asymptotic
lines a and c are degenerated (no gap) and b is not. When
the inter-species interaction is weak |UAB | � U the gap
corresponds to that of a single-particle delocalized in the
lattice. The single-particle energy spectrum for 2 sites
is Ei/J = −1, 1 and the gap is ∆E/J = 2. In this
situation the B-particles are frozen as a Mott insulator
and do not play a role in the energy gap and we are left
with a single A particle in two sites. When this Mott
insulator configuration breaks, the gap is reduced until
it closes.

3. Fock state structure

The probability for each Fock state in the ground state
is shown in Fig. 5. The structural change in the ground
state is clear. Since this change is due to an avoided
crossing, it has to be continuous, as we can see in Fig. 5,
where we observe a smooth change. For values of the
inter-species interaction |UAB | � U the state of mini-
mum energy is the one formed by the B-Mott insulator
and the free A particle. Close to those limits we will have
a mix between that state and the corresponding states for
attractive (UAB < −U) and repulsive (UAB > U) inter-
actions. For strong |UAB | the particles become frozen
and the ground state becomes degenerated.

To broaden the picture it can be helpful to recognize
the states that correspond to the asymptotic behaviors
shown in Fig. 3 as a combination of the Fock states. In
both energy levels within a line, the states that conform
it only differ by a relative phase, and therefore corre-
spond to two orthogonal combinations of the same Fock

FIG. 5: Colormap of the probability for each state of the Fock
basis in the ground state in different values of r for M = 2
sites. The number of particles are NA = 1 and NB = 4. We
can see two clear structural changes for r = 0 and r = 2.

state vectors. As mentioned above, when approaching
the critical values for the parameter r = 0 and r = 2,
these states become a mixture of the asymptotic energy
states.

C. Non-integer filling fraction νB

Now we focus on the case of an extra B-particle NB =
M + 1 and an impurity NA = 1 in two sites M = 2. We
consider two limiting situations (in absence of tunneling):

1. for UAB < 0 we can describe the system as one pair
of AB particles moving in a B-Mott Insulator.

2. for UAB > 0, the configuration would be two dif-
ferent particles moving in the B-Mott insulator.

The attractive and repulsive cases are notably differ-
ent, but in this case both can be treated within the same
approach. For J � U,UAB , i.e. the interaction dominat-
ing over the hopping, we can treat the latter as a pertur-
bation. We can apply degenerate perturbation theory to
find an effective Hamiltonian, which will lead us to char-
acterize the behaviour of the gap presented in Fig. 4.

For attractive inter-species interaction UAB the process
consists in the following: We assume two B particles to
be frozen in a Mott Insulator and consider an effective
theory of pairs AB. Therefore we focus in the following
states:

| L〉 ≡ |ABB , B〉, | R〉 ≡ |B,ABB〉,

which are degenerated if we only consider the interaction
terms.

To find the matrix form for the effective Hamiltonian
Heff = Hint +HJ we apply perturbation theory [8]:

〈α | Heff | β〉 = 〈α | HU | β〉−
∑
γ

〈α | HJ | γ〉〈γ | HJ | β〉
E

(0)
γ − E(0)

α
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where α, β = L,R. Therefore: E
(0)
α = E

(0)
β = 2UAB + U .

Note that 〈R | HU | L〉 = 〈L | HU | R〉 = 0. By applying
the hopping term to these states we can find the excited
states:

| γ0〉 = |AB,BB〉, | γ1〉 = |BB,AB〉

. Given E
(0)
γ = UAB +U we obtain E

(0)
γ −E(0)

α = −UAB .
Proceeding to compute the expected value for each state
we find the effective Hamiltonian in matrix form,

Heff =

(
2UAB + U + 5J2

UAB

4J2

UAB
4J2

UAB
2UAB + U + 5J2

UAB
.

)
(3)

The energy eigenvalues are (taking into account UAB <
0 for attractive interaction): E0 = −2|UAB | + U −
5J2/|UAB | − 4J2/|UAB | and E1 = −2|UAB | + U −
5J2/|UAB |+ 4J2/|UAB |. The energy gap that we obtain
is ∆E = 8J2/|UAB | (4).

It is interesting to note that for the repulsive part the
states we focus on, | Lr〉 and | Rr〉, correspond to the | γ0〉
and | γ1〉 states, which describe a frozen Mott insulator
of B particles and two particles A and B that repulse
each other. This results in the same behaviour of the
gap and simplifies this characterization, but it does not
happen for different number of sites.

Finally, if we add two more B-particles, we observe
the behaviour is similar, see Fig. 4. Therefore, we treat
the case with the same approach, but considering a Mott
insulator of BB pairs, filling νB = 2. For the attractive
case we find ∆E = 12J2/|UAB | (5). The repulsive case
again follows the same idea as before.

These analytical formulas, Eqs. (4) and (5), agree well
with the exact diagonalization results, see Fig. 3. In fact,
we noted that this behaviour still holds when we add two
extra B-particles. Nevertheless we expect this treatment
to fail when the system becomes larger, since we rely on
a perturbative approach.

For slightly larger systems, we recognize the same be-
haviour for the integer filling fraction of B-particles. In
the system with the extra B-particle the approach for at-
tractive interaction holds, but the behaviour for repulsive

interaction is different, since the balance of interactions
will lead to other preferred configurations.

VI. CONCLUSIONS

In this work we have studied the physics of a few ul-
tracold bosons trapped in an optical potential modelled
by the BBH for one and two bosonic species. We have
employed a methodology based on exact diagonalization
of the Hamiltonian matrix, being able to obtain detailed
results which allowed a thorough characterization of the
system behaviours under different conditions. These re-
sults can be summarized as follows.

For the one component case we have understood the
structures preferred for the ground state with large U/J ,
finding analytical solutions that agree with the numerical
results. It is important to notice the importance of the
role of the filling fraction ν for repulsive interactions.

For the two component case we have studied the be-
haviour for different inter-species interactions. We have
described first the existence of a pair formation in a sys-
tem with two particles of different species. Finally we
have focused on studying the system with one impurity,
being able to describe the energy spectrum behaviour and
characterizing the gap between the ground state and the
first excited state. This characterization differed greatly
for integer and non-integer filling fractions of B-particles.
We have described the latter by an effective theory and
we have obtained results that match the results of the
simulation.
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and Bloch, I. Quantum phase transition from a superfluid
to a Mott insulator in a gas of ultracold atoms. Nature
415, 39 (2002).

[4] Kraemer, M., Menotti, C., Pitaevskii, L., and Stringari,
S. Bose-Einstein condensates in 1D optical lattices. Eur.
Phys. J. D 27, 247 (2003).

[5] Zhang, J. M., and Dong, R. X. Exact diagonalization: the
Bose–Hubbard model as an example. Eur. J. Phys. 31,
591 (2010).

[6] Van Rossum, G. The Python Library Reference, release
3.8.2. Python Software Foundation (2020).

[7] Morera, I., Astrakharchik, G. E., Polls, A., and Juliá-
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