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Abstract

The use of Deep Reinforcement Learning methodologies has been successful in recent

years in cooperative multi-agent systems. However, this success has been mostly em-

pirical and there is a lack of theoretical understanding and solid description of the

learning process of those algorithms. The discussion of whether the limitations of

these algorithms can be tackled with tuning and optimization or, contrarily, are con-

strained by their own definition in these models can also easily be put forward. In

this work, we propose a theoretical formulation to reproduce one of the claimed lim-

itations of Value Decomposition Networks (VDN), when compared to its improved

related model QMIX, regarding their representational capacity. Both of these al-

gorithms follow the centralized-learning-decentralized-execution fashion. For this

purpose, we scale down the dimensions of the system to bypass the need for deep

learning structures and work with a toy model two-step game and a series of one-shot

games that are randomly generated to produce non-linear payoff growth. Despite

their simplicity, these settings capture multi-agent challenges such as the scalability

problem and the non-unique learning goals. Based on our analytical description, we

are also able to formulate a possible alternative solution to this limitation through

the use of simple non-linear transformations of the payoff, which sets a possible

direction of future work regarding larger scale systems.

Keywords: Reinforcement Learning; Multi-Agent Learning; Action-Value represen-

tation; One-shot games





Chapter 1

Introduction

Machine Learning algorithms are being used nowadays in a broad range of daily

applications. A specific branch of Machine Learning is Reinforcement Learning (RL),

which is based on the training of an agent to make proper sequential decisions in a

given environment in the presence of uncertainty. This has applications in real-time

strategy games, robotic control, autonomous driving and many other fields. One of

the most known advances was the computer success in the game of Go [1]. These

kind of settings usually call for the need of more than one agent, giving birth to the

multi-agent RL (MARL) settings. Multi-agent settings can also be applied in other

areas such as sensor and communication networks, social sciences, and finances.

Modelling these systems faces additional challenges given their complexity, large

dimensions and variability in communication structures.

Currently, there is a large interest and work focused on addressing these challenges,

and the improvement of single-agent RL, such as the use of Deep Learning, is also

boosting the research in multi-agent systems. In this context, most of the progress

in Multi-agent Deep RL is driven by empirical success, and it is often difficult to

disentangle which design principles determine when one algorithm is superior to

another one.

This thesis is pointed at theoretically analysing with simple models the represen-

tational complexity allowed by two of the state-of-the-art algorithms in fully coop-

1



2 Chapter 1. Introduction

erative MARL. Through the use of toy models, a one-step sequential decision task

is analyzed and an alternative way to learn an optimal policy based on learning

non-linear monotonic rewards is proposed.

In this first chapter, the needed theoretical basis and formulation is presented in

order to allow the understanding of the used methods throughout the thesis. In

the second part, the detailed formulation of the problem and settings is presented,

and a brief intuition of the proposed solution is introduced. Finally the results and

proposed solutions are displayed and described in the third chapter, and properly

discussed and summarized in Chapter 4.

1.1 Motivation and objectives

What this thesis tries to tackle is a theoretical analysis of a simple question: How to

represent and learn non-linear growing reward functions in multi-agent reinforcement

learning settings. We could find similar shaped payoffs in non-factored games such

as the Climb Game [2], in which, having each agent three possible actions, there is a

specific action that leads to the highest reward only if all agents coordinate to choose

it. If only some of the agents choose such action there is no reward, and the choice

of the other two actions provide lower rewards but don’t require coordination. If

the reward for the optimal action is much larger than the other sub-optimal choices,

systems will tend to underestimate the best obtainable reward.

This motivation originates in a claim made in the Monotonic Value Function Fac-

torisation for Deep Multi-Agent Reinforcement Learning paper [3], by Rashid,T. et

al, where their algorithm’s representation complexity is declared to be the reason

their algorithm (QMIX) performs better for non-linear growing payoffs than the

Value-Decomposition Networks(VDN) algorithm. This is also supported by the use

of a toy model two-step game and an experiment with random matrices, which will

also be presented and analysed in this thesis.

At the same time, both of these algorithms make use of Deep learning to represent

the values functions, which makes difficult to understand and compare both methods
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theoretically. A use of such entangled structures leads to less understanding of the

model and to a higher need for computational power. In this thesis a simpler alter-

native for the claimed improvement in complexity representation is also developed,

though only at its first stages and in the form of a method proposal.

Therefore, the motivation is to analyse this claim and propose a theoretical formu-

lation that is able to explain it, as well as proposing a new method to deal with

non-linear monotonic payoff behaviours. This is done with the use of simple non-

linear transformations of the payoff that aims to feed the learning system a more

linear payoff, and then recover the actual shape again once it has been learned.

This motivation shares similarities to the paper Analysing factorizations of action-

value networks for cooperative multi-agent reinforcement learning, by Castellini, J.

[2] that appeared at the time when this thesis was in its last stages. Their work

uses one-shot game settings to understand the representational capacity of different

factored structures of the Q-value function. The format of their results and overall

objectives is fairly similar to this work, and provides a very instructing and com-

prehensible reading. While this project tackles the specific problem of non-linear

payoffs, their work is more extensive in terms of the analysed games and uses deep

learning algorithms.

It is worth to note that other methodologies were considered at the start of the thesis.

For example, working with different Loss functions such as the logistic Bellman

error [4] in dynamic programming, in order to avoid local minima when optimizing

expected loss. This line of work could still be explored but it was found to extend

the project too much beyond its temporal restraints.

1.2 Reinforcement Learning and MDPs

Reinforcement learning is based on sequential decision-making problems in a setting

where an agent interacts with an uncertain environment and needs to learn by

interacting with such environment how to improve its performance.

In episodic RL, an agent at state st ∈ S at time t takes an action at in A(st) and
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obtains a reward for this execution R(st, at, st+1) ∈ R before transferring to a new

state st+1 ∈ S according to the state transition probability distribution p(st+1|st, at).

The sets S and A(st) correspond to the state space and the space of allowed actions

in a given state, respectively. This process is repeated T steps until an episode ends.

A general mathematical framework for formalizing this setting is the infinite-horizon

discounted Markov Decision Process (MDP) [5], in the case the agent can fully

observe the state. In case the agent can only access a few states of the system,

hence is subjected to partial observability, a POMDP model would represent the

problem better [6]. There are also other formulations for MDPs: finite-horizon

episodes, average reward, etc. For simplicity, we consider the standard infinite-

horizon, discounted MDP.

The goal in this setting is to obtain a mapping from the state space S to the

action space A (referred as a policy π : S → A) so that the expected accumulated

discounted reward

E

[∑
t≥0

γtR (st, at, st+1) | at ∼ π (· | st) , s0

]
, (1.1)

is maximized. The discount factor γ ∈ [0, 1] ensures that closer rewards (in time)

are more relevant distant ones, and that the sum in (1.1) remains finite.

According to this goal, one can define both the Value function and the action-Value

function, or Q-value function for each state s and action a under a specific policy π:

V π(s) = Eπ

[
∞∑
t=0

γtr (st, at, st+1) | at ∼ π (. | st) , s0 = s

]
(1.2)

Qπ(s, a) = Eπ

[
∞∑
t=0

γtr (st, at, st+1) | at ∼ π (. | st) , s0 = s, a0 = a

]
(1.3)

The functions linked to the optimal policy π∗, obtained by maximizing over the

actions, are the optimal state-value function and optimal Q-value function.

Assured by the Markov property, where it is stated that the probability of a future
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state only depends on the immediate past state and not the whole previous sequence,

one can obtain the optimal policy by means of learning the optimal Q-value function

through dynamic programming approaches. These approaches are strongly based

on the Bellman equations formulation:

V π (st) =
∑

a∈A(st)

π (a | st)
∑
s′∈S

p (s′ | st, a) [r (st, a) + γV π (s′)] (1.4)

And the optimal versions, by maximizing over the actions, take the form of the

Bellman Optimality equations:

V π∗ (st) = max
a

∑
s′

p (s′ | st, a)
[
r (st, a) + γV π∗ (s′)

]
(1.5)

Qπ∗ (st, at) =
∑
c′

p (s′ | st, at)
[
r (st, at) + γmax

a′
Qπ∗ (s′, a′)

]
(1.6)

These are all for the case where the environment is known i.e. we know the transition

probability distribution p(st+1|st, at) and the reward for all states and actions r(a, s).

However, in real life, this is not true. Reinforcement Learning is based on finding the

optimal policy in these unknown environments. The RL algorithms usually work by

sampling tuples of state, action and reward, while learning the policy.

These algorithms can be value-based, their aim is to estimate the state-action value

function correctly, or policy based methods, which work on the policy directly by

parametrizing and optimizing it. A common practise, since the scale of the system

tends to increase and the state and action spaces reach very large dimensions, is to

use function approximation [7]. This approach basically tries to learn parameters of

a function by supervised learning in order to decrease the dimensions of the problem.

Then, the function that needs to be maximized is:

J(θ) = Ea∼πθ(.|s),s∼ρπθ
∞∑
t=0

γtr (st, at; θ) , (1.7)
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Where the expectation is taken for the actions and distribution of occupied states.

Some of the most common value-based methods are Q-learning [8], SARSA and

Monte Carlo Tree Search (MCTS). Only Q-learning will be explained for its rele-

vance for the upcoming sections. In the same way, no policy-based methods will be

presented.

Q-learning is a method of asynchronous dynamic programming that is closely related

to the method of temporal differences [8]. It is off-policy, which means it uses

different policies to evaluate and generate new samples. It is based on performing

updates (1.8) on the Q-value function when receiving a new sample of transition

from a state s to the next one s′ with an action a and a reward r. With α > 0 as

the learning rate, one can see within finite action and state spaces that Q-learning

can converge towards the optimal Q-value function.

Q̂(s, a)← (1− α)Q̂(s, a) + α
[
r + γmax

a′
Q̂ (s′, a′)

]
(1.8)

1.3 MARL

Multi-agent RL is also based on sequential decision-making problems but in this

case it has to capture the interaction and decisions of multiple agents. The fact that

different agents work in the same environment directly affects the state evolution

and individual rewards, which will then depend on the combination of actions taken

by such agents. The optimal solution will also depend on whether the agents seek to

maximize their own individual reward or try to work together. In this line a way to

classify multi-agent settings can be fully cooperative, where there is a general reward

for all agents or a team-average reward, competitive setting, which is modelled as

zero-sum Markov games [5], or mixed setting, where agents only seek their own

benefit. For the description of the project only fully cooperative settings will be

considered.

Under other perspectives, however, there are more ways to classify a multi-agent
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setting. For example, there are different information structures that describe the

level of information the agents have on the environment or about other agent’s states

or actions. Different cases would be: centralized settings, where a central controller

can use the information of the agents at all states and design the optimal policies,

decentralized settings, where there is no information exchange between agents and

no central controller, or a mix between both, decentralized setting with networked

agents, where there is some communication between agents but no central con-

troller... Regarding this classification, a split between the information state during

learning and execution is also possible: in the models described in this project, we

will work with centralized-learning-decentralized-execution.

The tuple G = 〈S,A, P, r, Z,O, n, γ〉 can fully describe a decentralized partially ob-

servable Markov decision process (Dec-POMDP) suitable for our multi-agent fully

cooperative setting. The notation used is selected from [3]. Where s ∈ S describes

the full state of the environment, ~a ∈ A describes the joint-action vector formed

by the individual action choices of each agent i ∈ I ≡ {1, ...n}, the action taken

by agent i is then ai. P is the environment state transition function, the reward

function r(s,~a) describes the reward shared by all agents and γ is a discount factor

as in the single-agent case. O(s, i) : S × I → Z is the observation function that

defines the space Z of individual observations z ∈ Z.

Actions are decided and executed simultaneously for all agents. Therefore new

observations are perceived at the same time as well for all agents, as the environment

has changed according to the transition of states. Each agent has a history that

takes into account previous actions and transition states, τ i. When working with

centralized learning and decentralized execution, the stochastic policy of each agent

πi(~ai | τ i) can only access their own history, but when learning the model can also

use the global state as well as all agent’s histories. The joint policy is defined by

the global Q-value function Qπ (st,~at) = Est+1:∞,~at+1:∞ [
∑∞

i=0 γ
irt+i | st,~at].
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1.3.1 Challenges

MARL faces several problems in its theoretical definitions, besides the challenges

single-agent systems might already suffer from. In [5] a summary and detailed expla-

nation of these challenges is proposed in order to point at possible improvements for

developing new models. We revise these challenges in order to identify the obstacles

the models we will go through might face.

- Non-unique learning goal : It refers to the unclarity of what the learning goal in

that system is. The goal is usually the convergence to Nash equilibrium, which is

characterized by an equilibrium point where none of the agents have the need to

change their state. In the systems we analyse (VDN and QMIX) the main goal

is to maximize the joint reward, and therefore the global optimum defines a Nash

equilibrium.

- Non stationarity : Since the learning is simultaneous, the variation of the environ-

ment at each step of the policy leads to the observation of the environment from

each agent to be non-stationary. Therefore, the Marokivan property does not apply

anymore and convergence is not established like in single agent anymore. A solution

would be that the agents assume a stationary environment nevertheless, which is

called an Independent Learner, but this leads to problems in converging. In this

work we are not affected by this drawback since we focus on single and two step

games, as it will be seen in Chapter 2.

- Scalability : This challenge refers to the combinatorial nature of joint action space,

which grows exponentially in dimension when adding agents to the setting. That is

why some models use factorized structures, like the ones covered in the next section.

This challenge is also addressed with the use of theories for deep multi-agent RL,

which at the same time uses function approximation.

- Different information structures : As mentioned, several information structures can

be used when building a model, that is who knows what in learning and execution.

The fact that some structures consider partial observation worsens the aforemen-
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tioned problem of non-stationarity. In this work we are not affected by this drawback

since we focus on single and two step games and their learning, as it will be seen in

Chapter 2.

1.3.2 Deep Q-Learning

Deep-Q-Learning [9] is a method that uses deep neural network parameters to de-

scribe the Q-value function. It is based in the same idea as Q-learning, that is

why it is named after it. In Deep Q-Networks (DQNs) θ is used to parametrize the

Q-value function and is learned through minimizing the TD error (1.9). A replay

memory buffer is used to store tuples of state, action, reward and transition state,

and batches of b transitions from this buffer are used to learn the parameter θ. The

use of a buffer helps randomize the data. A target network, with parameters θ−, is

used to only adjust the Q-value function towards target values that are periodically

updated, since this can help reduce correlations.

L(θ) =
b∑
i=1

[(
r + γmax

u′
Q
(
s′, u′; θ−

)
−Q(s, a; θ)

)2]
(1.9)

For agents that have partial observations, it is interesting to use their action-

observation history. Deep Recurrent Q-Networks (DRQN) consider the prior knowl-

edge [10], and can be used with that purpose. The architecture is similar to DQNs

but replacing only its first fully connected layer with a recurrent Long Short-Term

Memory(LSTM) layer of the same size.

1.3.3 State-of-the-art relevant models

The two relevant models for this project are Value Decomposition Networks (VDN)

and QMIX. Both consider a fully cooperative setting with centralized learning and

decentralized execution, and also use Deep Q-learning structures. The notation

introduced in section 1.3 is used. The two models differ in how the global Q-value

function is defined regarding the individual Q-value functions.
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In VDN the joint Q-value is the sum of each agent’s Q-value function, and therefore

can be additively decomposed. These individual Q-value functions are conditioned

only on the specific agent’s observation history. The obtained policy is decentralized,

since each agent chooses the action greedily with respect to its own Q-value function.

Qtot(τ ,~a) =
n∑
i=1

Qi

(
τ i, ai; θi

)
(1.10)

As mentioned in [11]: "We learn Qi by backpropagating gradients from the Q-

learning rule using the joint reward through the summation, i.e. Qi is learned

implicitly rather than from any reward specific to agent i, and we do not impose

constraints that the Qi are q-functions for any specific reward". Therefore, the

optimal linear value decomposition is learned from the team reward signal. Qi are

represented with Deep Neural Networks.

QMIX [12] has a similar structure to VDN but instead of using the full factorization

of VDN a monotonicity constraint is applied to assure consistency between the

decentralized policies and the centralized policy based on the optimal joint Q-value

function (1.11).

argmax
~a

Qtot(τ ,~a) =


argmaxa1 Q1 (τ

1, a1)
...

argmaxan Qn (τ
n, an)

 (1.11)

Even if both models can satisfy (1.11) QMIX has a larger representational com-

plexity, since it can represent combinations of individual Q-value functions that are

montonic but non-linear. Monotonicity is ensured with:

∂Qtot

∂Qi

≥ 0,∀i ∈ I (1.12)

The structure of QMIX is the following:
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• Agent Networks : DRQNs that represent individual Q-functions. The input is

the current individual observation and last action at each time step and output

is the Qi.

• Mixing network : Feed Forward Neural Network. Individual Qi as input and

output is the non-linear mixing of those.

• Hypernetworks : They provide the weights for the mixing networks and ensure

positive weights (monotonicity). The system’s state s is used as input in

the hypernetworks because the Q-value function can depend on it in a non-

monotonic way.

See Fig.1 to see the overall structure and combination of the different parts and

Fig.2 for the pseudocode of the implementation of QMIX. This examples will be

recovered for a modification proposal in the discussion.

Figure 1: Structure of QMIX (from [3]). (a) Mixing network structure, in red are
the hypernetworks. (b) General structure. (c) Agent network structure.
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Figure 2: Pseudocode for QMIX implementation (from [3]).



Chapter 2

Monotonic versus additive Value

Function Factorisation

The aim of this chapter is to analyze the differences between using monotonic (pos-

sibly non-linear) value function factorizations, as in QMIX [3], and using additive

(linear) value function factorizations, as in VDN [11].

Our approach is bottom-up: we consider absence of estimation errors produced by

sampling and neural networks. We are interested in:

1. Analyzing, using the experimental setup similar to the one of [3], the difference

between using a QMIX decomposition and a linear one, such as in VDN.

2. Introducing the idea of using an explicit parametrized model of the payoff

function, as a non-linear transformation of the observed payoff. We analyze

what are the benefits of such an approach compared to the two previous meth-

ods, that do not learn the reward transformation, in the same experimental

setting.

13
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2.1 Two-Step Game

This experiment is used in [3] to illustrate how the increased representational ca-

pacity of QMIX provides benefits when compared to VDN, in the presence of boot-

strapping, i.e., updating Q-values based on other Q-values estimates.

We first analyze this problem in the absence of neural networks, that is, using a

tabular representation and a linear parametrization of the Q-values.

The structure of the two-step cooperative matrix game for two agents is as follows:

in the initial state, Agent 1 can choose between two actions (A or B) and the

action choice of Agent 2 has no effect. If Agent 1 chooses A, the environment

transitions to State 2A with probability one, and if it chooses action B, it transitions

with probability 1 to State 2B. In State 2A and State 2B both agent’s choices are

relevant. The payoff at the subsequent state is determined by the matrices described

in Figure 3.

Figure 3: Two-step game theoretical tables. Figure taken from [3].

Figure 4 shows the results of QMIX and VDN. We observe that, contrary to QMIX,

VDN fails to learn correctly the (non-linear) payoff in State 2B, and this error

backpropagates, leading to an incorrect initial decision (Agent 1 taking action A),

since the value of State 1 is computed bootstrapping from the State 2B estimate.

2.1.1 Analytical approach

We start by considering an analytical framework for how would a linear factoriza-

tion of the value function approximate the maximum payoff of the two-step game

assuming that the payoff function is known and without approximations and in the
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Figure 4: Results for VDN and QMIX. Figure taken from [3].

absence of other sources of approximation errors. For that we define the matrix J ,

that contains the one-hot encoding ~a ∈ {0, 1}m×n of each possible joint action. In

this example of two players and two actions, the joint action corresponds to vectors

of size 4

J =


1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

 , (2.1)

where in the first row both agents would proceed with the first available actions, in

the second row the first agent would execute the first action and the second agent

would execute the second available action, and so on.

We can then express the estimated Q̂tot for every state as a linear combination of

the entries in J and associated m× n parameters, e.g., ω = (a11 a12 a21 a22)
>.

The objective is to solve the linear system J · ω = b (one for each state) where b is

a vector containing the actual payoff entries for each joint action ~a.

The optimal solution is given by

b̂ = J · ω∗ (2.2)

where ω∗ = J† · b are the learned local Q-values that are combined for each state

and † denotes pseudo-inverse. The “best” performance of VDN would be given by

the above estimator at each state.



16 Chapter 2. Monotonic versus additive Value Function Factorisation

The corresponding solutions for State 2A and State 2B are:

b̂(2A) = (7 7 7 7)> (2.3)

ω∗(2A) = (3.5 3.5 3.5 3.5)> (2.4)

b̂(2B) = (−1.50 2.50 2.50 6.50)> (2.5)

ω∗(2B) = (−0.75 3.50 − 0.75 3.50)> (2.6)

.

Note the similarity between the solution in Eqs. (2.3), (2.5) and the VDN solution

of Figure 4.

To work through the process and see the backpropagation, we use the aforementioned

Bellman equations. Since we are working with an additive formulation for the Q-

value functions, the Q-value function of a certain joint state Qtot is the sum of the

respective agents’ individual Q-functions Qi, i ∈ {1, 2}. We first get the joint Q-

value function for State 2A, which is terminal, and thus does not need a recursion:

Q̂∗tot(2A,~a) = Q∗1(2A,~a1) +Q∗2(2A,~a2) = b̂(2A), (2.7)

where ~ai indicates the corresponding one-hot encoding of action of agent i. The linear

estimate of the (optimal) value function is then provided by the best rewarding joint

action

V̂ ∗(2A) = max
~a

Q̂∗tot(2A,~a) = 7. (2.8)

Similarly, for state 2B:

Q̂∗tot(2B,~a) = Q̂∗1(2B,~a) + Q̂∗2(2B,~a) = b̂(2B) (2.9)

V̂ ∗(2B) = max
~a

Q̂∗tot(2B,~a) = 6.5. (2.10)
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The value function for the initial state I (State 1) is calculated recursively

V̂ ∗(I) = max{0 + γV̂ ∗(2A), 0 + γV̂ ∗(2B)} = 7γ, (2.11)

which leads to the suboptimal solution (action A for agent 1).

2.1.2 Modifying the Payoff

We have shown that using a linear decomposition of the payoff can lead to problems,

once the approximated estimates are used for bootstrapping the values.

We now propose an alternative way which will keep the additive decomposition of

the value function, but will assume that the observed payoff is a modified version

of an true, unobserved, payoff. We show that a simple transformation can recover

the optimal solution. In a sense, instead of increasing the representational capacity

of the value function estimate, we will assume a (simple) observation model of the

payoff function.

Let’s assume that the observed payoff bo is, for example, quadratic with respect to

an unobserved payoff, that is

bo = b2. (2.12)

We can then compute ω∗ and b̂ according to Equation (2.2), but replacing the state

payoffs by taking the inverse transformation, i.e., for each state:

ω∗o = J† ·
√
bo. (2.13)

The resulting parameters, after recovering the real value by applying the inverse

transformation, correspond to the actual payoffs:

b̂o(2A) = (7 7 7 7)> (2.14)

b̂o(2B) = (0 1 1 8)>.
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and the Bellman equations then lead to the optimal solution:

Q̂∗tot(2A,~a) = Q∗1(2A,~a1) +Q∗2(2A,~a2) = b̂o(2A) (2.15)

V̂ ∗(2A) = max
~a

Q̂∗tot(2A,~a) = 7.

Q̂∗tot(2B,~a) = Q̂∗1(2B,~a) + Q̂∗2(2B,~a) = b̂o(2B) (2.16)

V̂ ∗(2B) = max
~a

Q̂∗tot(2B,~a) = 8

V̂ ∗(I) = max{0 + γV̂ ∗(2A), 0 + γV̂ ∗(2B)} = 8γ. (2.17)

Figure 5 shows the resulting values comparing the linear approximation and the

nonlinear transformation. Clearly, the choice of payoff transformation specifically

works for this example. In the next chapter we will analyze more general ways of

modeling transformations.

Figure 5: Two-step game obtained results with our analytical approach for the given
payoff (a) and using a quadratic transformation (b).

2.2 Random matrices

We now consider another experiment from [3] using random matrix games. We

reproduce the results for the Value Decomposition Network (VDN) and analyze a

possible improvement using a non-linear transformation. Contrary to the previous

task, this is a single-step game, and we analyze the capacity of this framework to

assimilate non-linear payoffs comparing the obtained maximum payoff to the real

one. As such, this setup studies the produced error but does not really study the

backpropagation of it.
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The idea is that the estimated value should not fall far from the real one to be able

to still choose the best option in a situation where other steps follow this choice. As

we have seen, the maximum value’s error is the only value that is involved in the

backpropagation, and therefore needs to be minimum.

To analyze how QMIX outperforms VDN, in [3] they create a payoff vector sampling

values uniformly from [0, 10) and set one of the values to the maximum value of 10.

This is done with full exploration and for {2, 3, 4} agents and {2, 3, 4} actions. In

their results, QMIX clearly outperforms VDN, which generates very poor results

(see Fig. 6).

We take a different approach. As before, instead of running VDN with its default

configuration, as in [3], we compute the approximated linear estimation of the payoffs

assuming the exact payoff known. This approximation can be seen as the best

possible estimator one could obtain using linear decomposition, and ignores other

possible errors due to learning, exploration, or sampling.

Our intuition was that using the analytical approach without a transformation we

would reach similar results to VDN in Fig. 6. However, this is not the case, as it will

be proven in the results (Fig.13) the analytical approach obtains a better overall per-

formance, even if not the best. Note that VDN has an extremely poor performance

in Fig.6. We thus conclude that the reported difference in performance between

QMIX and VDN cannot directly be attributed to the more general representation

capacity of QMIX, but to other factors involved in the learning algorithm.

We also need to take into account that VDN is composed of a whole different struc-

ture and, even if considering additive state-action value functions, its use of different

networks in learning could be creating this underperformance for non-linear as well

as linear payoffs.

Another relevant aspect to analyze is how the methods scale as a function of the

number of agents and actions. Both QMIX and VDN suffer from a decrease in

performance for higher dimensions of the payoff, as shown in Fig. 6.
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Figure 6: Median max~aQtot(s,~a) for n = {2, 3, 4} agents with m = {2, 3, 4} choices
of actions accross 10 runs for VDN and QMIX. The dashed line at 10 indicates the
right value. Figure taken from [3].

In our case, we notice that sampling payoff values according to a uniform distribution

induces a tendency for a more “linear” behaviour in the payoffs for higher dimensions.

This simply has to do with the dimensions of the payoff function, which increase at

the same time our maximum payoff value stays at 10. Therefore, we obtain a higher

performance for the linear solution with higher dimensions just because the payoff

shape is adapting to linear shapes better learned by it (Fig.7). This again brings the

question of: why does VDN downperform with such examples in Fig.6? If higher

dimensions in this model generate more linear payoff distributions, we would expect

the learning of VDN to be better for higher number of agents and actions.

We can thus conclude that the experimental setup considered in [3] can be improved

by considering different ways of generating the payoff functions that are not biased

towards favoring the linear decomposition (corresponding to VDN) as the number

of dimensions increases.

For that purpose, we consider the following strategies to generate random payoff

matrices:

1. Random Payoff for logarithmic distribution (randlog): In this case the payoff
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Figure 7: Examples of payoff instances sampling payoffs uniformly for increasing
values of m and n. The state-action space is modelled into a vector and ordered to
capture the tendency of the payoff. The payoff vector looks more linear for increasing
dimensionality.

values are drawn from a log series distribution with specified shape parameter

(in this case p = 0.8) and inverted. See Fig.8 for examples.

2. Uniformly sampled Payoff with variable maximum value (uni_var): In this

case the payoff values are sampled from a uniform distribution but the range

of values grows with the payoff dimension. This is done with the intention

of compensating the increase of linear behaviour. However, we still find a

tendency towards linear shapes as seen in Fig.8.

3. Random Payoff for Laplace distribution (Laplace): In this case the payoff

values are drawn from a Laplace distribution of mean µ = 0 and scale λ = 1.

Then a shift is done in order to obtain non-negative values. This method is

used to test on non-linear payoff vectors that have a different shape than the

randlog method.

One thing to notice is that the maximum value of these payoff instances will not be

necessarily fixed as in the example above (which was 10), but can vary. To work

with this what we do is work with error percentages (how large is the error compared

to the full range of the payoff), where we assume that a system of a given dimension

will have variations in the payoffs larger than a system with smaller dimensions (or

that two choices with very similar values will lead to similar total rewards).

Our approach will consist on: generating random payoff instances within one of the
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Figure 8: Examples of payoff instances for the three payoff creation methods. In
descending order: randlog, uni_var and laplace.

presented creating models and learning the state-action value functions Qtot with

and without the help of non-linear transformations. Then, comparing the error of

the learned maximum payoffs with respect to the real value to see which learning

was better.
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Nonlinear Payoff Transformations

In this chapter we present and analyze in more detail the idea of learning parametrized

reward models. First, we describe three different transformations. Then, we consider

the learning setting, where neither the payoff and the transformation is known in ad-

vance. We then presents some results using these three transformations in one-step

tasks composed of random matrices generated according different strategies.

3.1 Modeling Payoff Transformations

Globally, we want to show that by learning an appropriate non-linear transformation

of the payoff, a linear decomposition of the Q function is sufficient for accurate policy

estimation, i.e., we do not need to consider non-linear monotonic functions.

Let n,m be the number of actions and agents, respectively, which will be used

consistently during the description of the methods. Since we are working with

single step instances (with a common initial state and several terminal states), we

consider the reward function to depend only on the action chosen: r(s,~a) = r(~a).

For simplicity, we assume the following non-linear transformations that map the

well-behaved payoff, that we assume can be represented by a linear decomposition,

to our observed payoff ro (non-linear):

23
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Logarithmic transformation: to recover the linear, well behaved, payoff we need

to apply a logarithmic transformation:

ro(~a) = exp(r(~a)) + clog, (3.1)

where clog is a parameter.

Inverse hyperbolic sine transformation:

ro(~a) = sinh(r(~a)) + csinh, (3.2)

where csinh is a parameter.

Exponential transformation:

ro(~a) = log(r(~a)) + cexp, (3.3)

where cexp is a parameter.

Our approach considers these three transformations simultaneously, we can cover

differently shaped reward functions. Some of this non-linear transformations do not

behave well with negative values or 0, and therefore for some instances they can lead

to singularities. A proper preparation of the reward data can also help in avoiding

such singularities, but the use of the three transformation models is a good way to

recover a good result even if one of them fails.

3.2 Learning a Model of Transformed Payoffs

The simplest way to learn the is using gradient descent (GD). We consider both

batch GD or Stochastic Gradient Descent (SGD). This depends on whether we can

access all instances simultaneously, on the scale of the problem if we need faster
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convergence, amongst other reasons. The following descriptions of the method are

formulated for SGD. However, in our experiments, we have worked with both batch

GD and SGD, and found similar results.

Let ω be the parameter vector containing the linear weights and the parameters of

the reward transformation, when applicable, ω = (w1, w2, . . . , wn×m, c). We want to

learn the optimal ω using gradient descent from a batch of N i.i.d. random samples

{(~a(i), r(i)o )}Ni=1.

3.2.1 Single-step Bellman Squared Error with Log Transfor-

mation

The empirical Bellman error for sample i is defined as BE(i)(ω) = Qω(~a
(i))− r(i)c .

The Bellman squared error becomes

L(ω) = 1

2

N∑
i=1

(
BE(i)(ω)

)2
, (3.4)

=
1

2

N∑
i=1

(
Qω(~a

(i))− r(i)c
)2
, (3.5)

where r(i)c = log(r
(i)
o − c) transforms our observed reward in the sample r(i)o to the

well-behaved, unknown reward. Note that Qω(~a) can be computed efficiently for

one joint action ~a, as Qω(~a) = Qω,1(a1) +Qω,2(a2) + . . .+Qω,m(am).

Denote the ai1, ai2, ...aim the action indices of i-th sample for each agent indexing the

weight vector w. The parameter updates for the i-th sample are

waij ← waij − η

(
m∑
k=1

waik − r
(i)
c

)
, ∀j = 1, . . . ,m, (3.6)

ci ← ci − η

(
m∑
k=1

waik − r
(i)
c

)
1

r
(i)
o − ci

, (3.7)

where η is the learning rate, e.g., η = 0.01.
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3.2.2 Single-step Bellman squared error with Arcsinh trans-

formation

In this case r(i)c = arcsinh(r
(i)
o − c) transforms our observed reward in the sample

r
(i)
o to the well-behaved, unknown reward.

The corresponding parameter updates are:

waij ← waij − η

(
m∑
k=1

waik − r
(i)
c

)
, ∀j = 1, . . . ,m, (3.8)

ci ← ci − η

(
m∑
k=1

waik − r
(i)
c

)
1√

1 + (r
(i)
o − ci)2

. (3.9)

3.2.3 Single-step Bellman squared error with Exp transfor-

mation

In this case r(i)c = exp(r
(i)
o − c) transforms our observed reward in the sample r(i)o to

the well-behaved, unknown reward.

The corresponding parameter updates are:

waij ← waij − η

(
m∑
k=1

waik − r
(i)
c

)
, ∀j = 1, . . . ,m, (3.10)

ci ← ci − η

(
m∑
k=1

waik − r
(i)
c

)
(−1)e(r

(i)
o −c). (3.11)

3.3 Results for Fixed Dimensionality

We first consider fixed values of dim = 9, for m = 2 and n = 3. By perform-

ing gradient descent using N = 100 different generated payoff instances, the error

between the learned maximum payoff value (max~aQtot(s,~a)) and the real value is

obtained. We evaluate both the error of the maximum value and the ranking of the

joint actions according to their corresponding value estimates.
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Figure 9: Results on three instances (rows) using a logarithmic distribution to gen-
erate the payoffs (Randlog). The x-axis indicates the joint actions indices and the
y-axis shows the corresponding learned Q-values. The original payoff is colored in
blue (dark blue for the optimal joint action). Methods in columns: no transforma-
tion (in red), exponential transformation (in orange), logarithmic transformation (in
green), and inverse sinh transformation (in purple). The missing marks correspond
to numerical errors. The exponential transformation, despite having some numerical
errors, approximates best the maximum payoff value.

Fig. 9 shows the obtained results for each method together with a baseline that does

not consider a transformation in the payoff. In this case, the ranking of the Q-values

given the joint action vectors is learned efficiently for most values. However, it often

underestimates the value of the maximum payoff. The solutions provided by this

method are consistent and numerically stable, which is not always the case as it will

be explained for the other methods.

Results using non-linear transformation:

When applying a transformation, the behaviour is fairly different for the three trans-

formations that have been considered. In Fig. 9 We observe that the exponential

transformation, despite having some numerical errors, approximates best the maxi-

mum payoff value (see the caption for details).

Fig.10 shows the results for N = 100 instances and different generation models

displayed as a percentage error for each case: without applying a transformation to

the original payoff (Lin), applying an exponential transformation (Exp), an inverse
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hyperbolic sine transformation (Arcsinh) and a logarithmic transformation (Log).

With these results, choosing the lowest error value (bestmethod), it is possible to

see if the use of non-linear transformations helps improve the error without any

transformation(Lin).

The logarithmic transformation fails to both learn the ranking properly and reach

an accurate value for the maximum payoff value (see Fig.9). At the same time, it

also behaves with growing instability for the Laplace distribution generated payoffs

(see Fig.10). The Log transformation also tends to fall into singularities and returns

considerably inefficient results for higher dimensions. Therefore this transformation

does not lead to satisfactory results.

The exponential transformation in this dimensions is the optimal one in terms of

reaching the maximum value accurately. However, for the Laplace distribution gen-

erated payoffs it is matched with the inverse hyperbolic sine transformation. This

can be explained by the fact that the latter type of payoffs have a shape that can

easily be related to a f(x) = sinh(x) function, and therefore the inverse function

can transform the payoff to a linear shape. It is interesting to note that an Arcsinh

transformation usually leads to slightly improved or identical solutions than with

no transformation, while an Exp transformation usually reduces the error consider-

ably. Using an Arcsinh transformation does not lead to notably improved results

compared to the no transformation case and therefore is ruled out of the optimal

solutions.

Despite the fact that the most successful transformation is using an exponential

function to reshape the payoff growth into a more linear behaviour, this transforma-

tion sometimes fails to converge and leads to singularities. It also sometimes fails to

learn the lowest payoff values, which does not have repercussions in case of focusing

on the optimal policy, but is worthy to take into account, as it might become a prob-

lem within the learning stage. In some specific situations, this irregular behaviour

can lead to inaccurate ranking of the rewards for non-optimal joint-action vectors.

Since the solution without any transformation behaves well under all conditions and

learns all payoff values, but fails in reaching the correct value for the maximum pay-
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Figure 10: Relative error between the maximum payoff value and max~aQtot(s,~a)
using different tranformations in N = 100 episodes and fixed dimensions. The three
figures correspond to the three different payoff generation methods. In red (Lin) the
error obtained with no transformation and in blue the optimal value out of all the
used methods (Lin,Log, Exp and Arcsinh). In dashed lines there is the solution
obtained using each transformation (Log, Exp and Arcsinh).
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off, a combination of both solutions would lead to an optimal situation: By using the

well behaved solution, the determination of the joint-action vector that corresponds

to the maximum reward is possible, while the learned value at that specific joint-

action vector will be given by the learned maximum payoff using the exponential

transformation. Then, one of the solutions will help by pointing out the optimal

combinations of actions while the other solution will help define the reward more

accurately, so that a back-propagation of errors is less possible.

In the following sections, for each combination of m, number of agents, and n,

number of actions per agent, an average percentage error of the N = 100 instances

is performed. This allows to see a change in behaviour for a growing scale of the

system and get an idea of possible scalability issues.

3.3.1 Results for Randlog payoff

For the payoff generated through samples of a logarithmic distribution (randlog), the

error percentage is improved substantially when using non-linear transformations on

the payoff, as presented in Fig.11. For this payoff behaviour, using the exponential

function to transform the payoff seems to be the ideal transformation (Fig.12).

However, as mentioned, it leads to singularities for some instances. Even if this

failures only happen less than 10% of the times, it can still create problems. This

also seems to grow with dimensions, so it can become a real struggle for larger

scale settings. For this type of payoffs, using an exponential transformation can be

helpful in terms of estimating the maximum value accurately but this use has to be

relegated to a support role since using just the solution with the transformation can

lead to singularities and bad ranking, which can be critical for decision-making.

3.3.2 Results for Uni_var payoff

The solutions given uniform distribution payoffs, even when using the variable max-

imum value to improve the variability in the shape of the payoff, reveal that for

higher dimensions the use of transformations in the payoff are not needed since the

error becomes the same as for the no-transformation case (Fig. 13). For these in-
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Figure 11: Average error percentage of the maximum learned payoff max~aQtot(s,~a)
by the linear decomposition (Linear, no use of transformation) and the best method
within the previous and the other methods that use transformations. The average
is done amongst N = 100 instances generated from a logarithmic distribution. The
variance is presented with vertical error bars. Note the error for the best method
stays within the 20%.

Figure 12: Percentage of success for each method, where Lin is without the use of any
transformation and Exp, Arcsinh and Log correspond to the presented transforma-
tions. In the bar chart below, a percentage of cases in which the Exp transformation
fails to deliver a solution.
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Figure 13: Average error percentage of the maximum learned payoff max~aQtot(s,~a)
by the Linear decomposition (no use of transformation) and the best method within
the previous and the other methods that use transformations. The average is done
amongst N = 100 instances generated from a variable uniform distribution. The
variance is presented with vertical error bars. Note that both results stay within
less than a 5% error for larger dimensions.

stances, performing no transformation becomes the best method, since if error is the

same the no-transformation (Lin, in Fig.14) is more efficient. Note that in this case

the exponential transformation of the payoff leads to less singularities.

3.3.3 Results for Laplace payoff

For the solutions obtained from the Laplace distribution generated payoffs the im-

provement is more subtle than for the randlog payoffs, but it still has a different

tendency and thus seems to stay within lower error values for larger dimensions

(Fig.15). Regarding the best transformation, using an exponential function seems

to work properly for larger dimensions, while the inverse hyperbolic sine works for

smaller settings. The singularities for the Exp transformation method also stay

within minimums. Therefore, this proves that for payoffs that have a non-linear

shape different from a exponential growth, the Exp transformation can still be use-

ful in capturing the non-linear behaviour.
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Figure 14: Percentage of success for each method, where Lin is without the use of any
transformation and Exp, Arcsinh and Log correspond to the presented transforma-
tions. In the bar chart below, a percentage of cases in which the Exp transformation
fails to deliver a solution.

In summary of the obtained results, the only transformation that was found to be

useful in reducing the maximum payoff value error was the Exp transformation. The

transformation was not needed for uniformly generated payoffs, where not applying

a transformation already obtained low error values, but it still delivered good results.

The scalability of this application could be threatened by the possible issues with

singularities.
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Figure 15: Average error percentage of the maximum learned payoff max~aQtot(s,~a)
by the Linear decomposition (no transformation) and the best method within the
previous and the other methods that use transformations. Results averaged over
N = 100 instances generated from a Laplace distribution (vertical bars denote
variance). Note the error for the best method is mostly below 20%.

Figure 16: Percentage of success for each method, where Lin is without the use of any
transformation and Exp, Arcsinh and Log correspond to the presented transforma-
tions. In the bar chart below, a percentage of cases in which the Exp transformation
fails to deliver a solution.
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Discussion

In this thesis, we have properly described how value decomposition affects the learn-

ing of differently shaped payoffs, and how this can become a limitation for structures

such as VDN. We also studied how a non-linear transformation of the payoff can

become a possible solution to these limitations. Our results show that an exponen-

tial transformation can lead to satisfactory learning the accurate value. However,

the use of non-linear functions can lead to singularities and is less efficient. It can

also become a problem when using exploration methods such as an ε-greedy choice

of actions when learning.

The fact that VDN performed poorly in the random matrix setting proposed by

[3] might not be directly linked to its representational capacity, since the designed

experiment would, in fact, provide more linear systems for higher dimensions, as

seen in Section 2. If the value decomposition algorithm they use in this experiment

continues to perform poorly or worsens its performance for larger systems, this could

be caused by the tuning and optimization of this algorithm, and not its theoretical

limitations. However, it is true that the theoretical description of both methods,

VDN and QMIX, accounts for a difference in representational complexity, and that,

as we proved in our analysis, simple linear mixing of individual Q-values can lead

to underestimating the true maximum payoff in non-linear payoff growth.

Based on our conclusions, we now present a possible adaptation of QMIX that ad-

35
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ditionally estimates a non-linear model of the payoffs that could be used to improve

the performance. The adaptation is based in QMIX because, based on the state-

of-the-art results, its structure has a better performance. The detailed analysis and

evaluation of such adaptation is left for future work.

4.0.1 Proposed Structure to Work with Larger Systems

The proposed structure considers not only the maximum paying joint action, but

also the ranking of actions according to the value estimate. Additionally, we use our

results on scalability presented in the previous chapter.

The following structure is mainly inspired in the QMIX structure (refer to Fig.1

and Fig.2 to see the original work), as it was also used and adapted in [2] for value

decomposition networks. The most notable change is the substitution of the mixing

network and hypernetworks for a simple linear mixing. Our contribution in this

case is the addition of a parallel process that helps adjusting the magnitude of the

estimated maximum payoff, in order to avoid the discussed backpropagation errors.

Figure 17: Adapted QMIX [3] structure.
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Figure 18: Adaptation of QMIX [3] pseudocode.

This proposed structure would also work with DRQNs within the agent networks

and would be suitable for partially observable settings as long as the environment

state is available for the mixing and Q-learning update stage. This is important

because payoffs are defined for general states and the specific constant ci defined for

the parametrization of the payoff is linked to each of these joint states.

Then, the structure (Fig.17) uses two parallel structures: one to learn the ranking of

joint actions properly, that does not use any transformation of the payoff and leads

to optimal decision making, and one that uses the transformation and re-adjusts the

value of the maximum payoff if needed. Note that the need for a good ranking does

not imply that the algorithm will explore all joint action possibilities (which would
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be intractable for scalability reasons) but that, in case of exploring, the ranking

needs to be accurate to not lead to bad decision-making. We can assume the re-

adjusting is needed if the learned values of the maximum payoffs differ more than

a set threshold, which will depend on the system we work with. See Fig.18 for the

description of this threshold.

A fair doubt would be: why not using only the learned Q-values with the transfor-

mation? But as commented in the previous section these results can be unstable

for the Q-values corresponding to non-optimal joint actions and therefore if we use

methods like an ε-greedy policy, the learning would likely be problematic. That is

also why for the agent networks we use a greedy policy in the case of applying the

transformation to the payoff. This, we assume, could provide support to the main

algorithm regarding the issues with backpropagation.

Note that this is only a proposal and could generate new or unexpected issues in

a further design, or could definitely be optimized and tuned to work better. For

example, finding other types of transformations that can aid in the re-adjusting or

provide possible resolutions to the instability when using the exponential transfor-

mation would be good directions for future work.

4.1 Conclusions

In this thesis a proper theoretical model and description of the representational ca-

pacity of an additive value function in cooperative MARL was presented. The model

was strongly based on the work of [3] and part of their experiments was reproduced

and discussed. This was done by scaling down the properties and characteristics

of their description to reduced scale systems, in order to escape the need for deep

learning structures.

Parting from this model, some possible solutions to the limitation of these description

of the Q-value functions for non-linear payoff growth were presented. Finally, a

possible adaptation of the current state-of-the-art algorithms was proposed, with its

viability left for future work.
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Some of the issues that could be also studied and considered in the future are:

the scalability of this proposed solution and the improvement in the singularities

obtained when applying non-linear transformations.
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